• Categoría de la entrada:Cupones / Cursos

Improve your data science skills and solve over 330 exercises in Python, NumPy, Pandas and Scikit-Learn!

Welcome to the Python for Data Science – NumPy, Pandas & Scikit-Learn course, where you can test your Python programming skills in data science, specifically in NumPy, Pandas and Scikit-Learn.

Some topics you will find in the NumPy exercises:

• working with numpy arrays

• generating numpy arrays

• generating numpy arrays with random values

• iterating through arrays

• dealing with missing values

• working with matrices

• joining arrays

• reshaping arrays

• computing basic array statistics

• sorting arrays

• filtering arrays

• image as an array

• linear algebra

• matrix multiplication

• determinant of the matrix

• eigenvalues and eignevectors

• inverse matrix

• shuffling arrays

• working with polynomials

• working with dates

• working with strings in array

• solving systems of equations

Some topics you will find in the Pandas exercises:

• working with Series

• working with DatetimeIndex

• working with DataFrames

• working with different data types in DataFrames

• working with indexes

• working with missing values

• filtering data

• sorting data

• grouping data

• mapping columns

• computing correlation

• concatenating DataFrames

• calculating cumulative statistics

• working with duplicate values

• preparing data to machine learning models

• dummy encoding

• working with csv and json filles

• merging DataFrames

• pivot tables

Topics you will find in the Scikit-Learn exercises:

• preparing data to machine learning models

• working with missing values, SimpleImputer class

• classification, regression, clustering

• discretization

• feature extraction

• PolynomialFeatures class

• LabelEncoder class

• OneHotEncoder class

• StandardScaler class

• dummy encoding

• splitting data into train and test set

• LogisticRegression class

• confusion matrix

• classification report

• LinearRegression class

• MAE – Mean Absolute Error

• MSE – Mean Squared Error

• sigmoid() function

• entorpy

• accuracy score

• DecisionTreeClassifier class

• GridSearchCV class

• RandomForestClassifier class

• CountVectorizer class

• TfidfVectorizer class

• KMeans class

• AgglomerativeClustering class

• HierarchicalClustering class

• DBSCAN class

• dimensionality reduction, PCA analysis

• Association Rules

• LocalOutlierFactor class

• IsolationForest class

• KNeighborsClassifier class

• MultinomialNB class

This course is designed for people who have basic knowledge in Python, NumPy, Pandas and Scikit-Learn packages. It consists of 330 exercises with solutions. This is a great test for people who are learning the Python language and data science and are looking for new challenges. Exercises are also a good test before the interview. Many popular topics were covered in this course.

If you’re wondering if it’s worth taking a step towards Python, don’t hesitate any longer and take the challenge today.

# Python for Data Science – NumPy, Pandas & Scikit-Learn

Improve your data science skills and solve over 330 exercises in Python, NumPy, Pandas and Scikit-Learn!»

Este curso se encuentra de manera gratuita gracias a un cupón que podrás encontrar aquí abajo.

Toma en cuenta que este tipo de cupones duran por muy poco tiempo.

Si el cupón ya ha expirado podrás adquirir el curso de manera habitual.

Este tipo de cupones duran muy pocas horas, e incluso solo minutos después de haber sido publicados.

Debido a una actualización de Udemy ahora solo existen 1,000 cupones disponibles, NO nos hacemos responsables si el cupón ya venció.

Para obtener el curso con su cupón usa el siguiente botón:

Deja tus comentarios y sugerencias

### Sobre Facialix

Facialix es un sitio web que tiene como objetivo apoyar en el aprendizaje y educación de jóvenes y grandes. Buscando y categorizando recursos educativos gratuitos de internet, de esta manera Facialix ayuda en el constante aprendizaje de todos.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.