using Python’s sklearn library

This course covers over 27 functions in Python’s machine learning library, sklearn. The functions covered in this course take the student through the entire machine learning life cycle.

The student will learn the types of learning that are part of sklearn, to include supervised, semi-supervised and unsupervised learning.

The student will learn about the types of estimators used in supervised, semi-supervised and unsupervised learning, to include classification and regression.

The student will learn about a variety of supervised learning estimators to include linear regression, logistic regression, decision tree, random forrest, naive bayes, support vector machine, k nearest neighbour, and neural network.

The student will learn about sklearn’s three semi-supervised functions to make predictions on classification problems.

the student will learn about some of the estimators used to make predictions on unsupervised learning, to include k means, hierarchical and Gaussian method.

The student will learn about dimensionality reduction and feature selection as a means of reducing the number of features in the dataset.

The student will learn about the different functions in sklearn that carry out preprocessing activities to include standardisation, normalisation, encoding and imputation.

The student will learn about hyperparameter tuning and how to perform a grid search on the different parameters in the model to help it work at peak optimisation.

The student will learn about goodness of fit tests, to include root mean squared error, accuracy score, confusion matrix, and classification report, which tell the user how well the model has performed.

The students will receive additional learning and cover the machine learning life cycle to enable him to initiate how own machine learning project using sklearn.

Conceptos teóricos de Machine Learning

using Python’s sklearn library»

Este curso es GRATIS

¿Quieres más cursos gratis?

Únete a nuestro canal en Telegram con cientos de cursos gratis publicados diariamente

Curso gratis en Udemy

Con los cursos gratis de Udemy puedes aprender muchas cosas sin tener que gastar en ello. Pero primero debes tener en cuenta varias cosas:

Contenido Gratuito

Los cursos gratis de Udemy te permiten aprender nuevas cosas sin tener que pagar. Aprovecha la oportunidad.

Aprendizaje

Pon en práctica todos tus conocimientos aprendidos. Realiza increíbles proyectos basados en el mundo real.

Limites

Debes tener en cuenta que todos los cursos gratuitos de Udemy son de máximo 2 horas y no incluyen un certificado.

Este curso se encuentra disponible de manera gratuita sin necesidad de ningún cupón, a través de la opción “GRATIS”.

Te recomendamos primero leer las diferencias entre un curso gratis y uno de pago para evitar malentendidos:

Cursos gratuitos
  • Contenido de vídeo en línea
Cursos de pago
  • Contenido de vídeo en línea
  • Certificado de finalización
  • Preguntas y respuestas de los instructores
  • Mensaje directo para el instructor

Aunque los cursos son colocados de manera gratuita, es posible que el autor del curso pueda cambiarlos a modalidad de pago, por lo cual te recomendamos revisar muy bien las características del curso.

Para obtener el curso de manera gratuita usa el siguiente botón:


Deja tus comentarios y sugerencias


Sobre Facialix

Facialix es un sitio web que tiene como objetivo apoyar en el aprendizaje y educación de jóvenes y grandes. Buscando y categorizando recursos educativos gratuitos de internet, de esta manera Facialix ayuda en el constante aprendizaje de todos.