
Learning Go

Authors:
Miek Gieben

Thanks to:
Go Authors

Google
Go Nuts mailing list

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Build: 0.2— October 27, 2010



Learning as we Go.
Updated to Go release.2010-10-20.



Table of Contents

1 Introduction vi
Official documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Getting Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

2 Basics 1
Hello World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Compiling and running code . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Variables, types and keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Operators and built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Go keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Control structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Arrays, slices and maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Functions 20
Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Multiple return values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Named result parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Deferred code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Variadic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Functions as values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Panic and recovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Packages 34
Building a package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Documenting packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Testing packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Useful packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Beyond the basics 46
Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Defining your own . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



ii Chapter: Table of Contents

6 Interfaces 58
Interface names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Concurrency 66
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Communication 74
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Command line arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Executing commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A Exercises 82
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B Colophon 90
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C Index 92

D Bibliography 94

List of Figures

1.1 Chronology of Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

2.1 Array versus slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 A simple LIFO stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Pointers and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Pealing away the layers using reflection . . . . . . . . . . . . . . . . . . . . . 63

List of Tables

2.1 Operator precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Pre–defined functions in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Keywords in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1 Valid conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



List of Code Examples iii

List of Code Examples

2.1 Hello world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Makefile for a program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Declaration with = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Declaration with := . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Familiar types are still distinct . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Arrays and slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Simple for-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Loop calls function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Fizz-Buzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 Runes in strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.12 Reverse a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 A function declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Local scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Global scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Scope when calling functions from functions . . . . . . . . . . . . . . . . . . . 21
3.5 Without defer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 With defer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Function literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Access return values within defer . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 Variadac function declaration . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 Anonymous function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11 Functions as values in maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12 The push and pop functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.13 Stack usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.14 stack.String() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15 A function with variable number of arguments . . . . . . . . . . . . . . . . . 31
3.16 Fibonacci function in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.17 A Map function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 A small package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Use of the even package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Makefile for a package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Test file for even package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Stack in a package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 A (rpn) calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 Make use of a pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Dereferencing a pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 A generic map function in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 A cat program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1 Defining a struct and methods on it . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 A function with a empty interface argument . . . . . . . . . . . . . . . . . . . 59
6.3 Failing to implement an interface . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Failure extending built-in types . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Failure extending non-local types . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6 Dynamically find out the type . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.7 A more generic type switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.8 Introspection using reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 62



iv Chapter: Table of Contents

6.9 Reflection and the type and value . . . . . . . . . . . . . . . . . . . . . . . . 62
6.10 Reflect with private member . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.11 Reflect with public member . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.1 Go routines in action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Go routines and a channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3 Using select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Channels in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.5 Adding an extra quit channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.6 A Fibonacci function in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.1 Reading from a file (unbufferd) . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2 Reading from a file (bufferd) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3 Processes in Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.4 Processes in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.4 uniq(1) in Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1 wc(1) in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Average function in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.3 Number cruncher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.5 uniq(1) in Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

List of Exercises

1 (1) Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
2 (1) For-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 (1) FizzBuzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 (1) Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 (3) Integer ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 (4) Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 (5) Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8 (5) Var args . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9 (5) Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10 (4) Map function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11 (2) Stack as package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12 (7) Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13 (6) Map function with interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 52
14 (6) Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
15 (5) Pointers and reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
16 (6) Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
17 (6) Cat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
18 (8) Method calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
19 (6) Interfaces and compilation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
20 (4) Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
21 (7) Fibonacci II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
22 (8) Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
23 (3) Minimum and maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
24 (5) Bubble sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
25 (5) Word and letter count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
26 (4) Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
27 (9) Number cruncher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
28 (4) Uniq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83





1 Introduction

I am interested in this and hope to do
something.

On adding complex numbers to Go
KEN THOMPSON

This is an introduction to the Go language from Google. Its aim is to provide a guide to this
new and innovative language. What is Go? From the website [6]:

The Go programming language is an open source project tomake programmers
more productive. Go is expressive, concise, clean, and efficient. Its concurrency
mechanisms make it easy to write programs that get the most out of multicore
and networked machines, while its novel type system enables flexible and mod-
ular program construction. Go compiles quickly to machine code yet has the
convenience of garbage collection and the power of run-time reflection. It’s a
fast, statically typed, compiled language that feels like a dynamically typed, in-
terpreted language.

The intended audience of this book is people who are familiar with programming and
knowmultiple programming languages, be it C[14], C++[22], Perl [16], Java [15], Erlang[13],
Scala[1] or Haskell[7]. This is not a book which teaches you how to program, this is a book
that just teaches you how to use Go.

As with learning new things, probably the best way to do this is to discover it for your-
self by creating your own programs. Therefor includes each chapter a number of exercises
(and answers) to acquaint you with the language. An exercise is numbered as Qn, where
n is a number. After the exercise number another number in parentheses displays the
difficulty of this particular assignment. This difficulty ranges from 0 to 2, where 0 is easy
and 2 is difficult. Then a short name is given, for easier reference. For example

Q1. (1) A map function …

introduces a question numberedQ1 of a level 1 difficulty, concerning a map()-function.
The answers are included after the exercises on a new page, except for those pesky unre-
solved research problems. The numbering and setup of the answers is identical to the
exercises, except that an answer starts with An, where the number n corresponds with
the number of the exercise.

Go is a young language, where features are still being added or even removed. Itmaybe
possible that some text is outdated when you read it. Some exercise answers may become
incorrect as Go continues to evolve. We will do our best to keep this document up to date
with respect to the latest Go release. An effort has beenmade to create ”future proof” code
examples.

The following convention is used throughout this book:

• Code is displayed in DejaVu Mono;

• Keywords are displayed in DejaVu Mono Bold;

• Comments are displayed in DejaVu Mono Italic;



Official documentation vii

• Extra remarks in the code ← Are displayed like this;

• Longer remarks get a number – ..1 – with the explanation following;

• Line numbers are printed on the right side;

• Shell examples use a % as prompt;

• An emphasized paragraph is indented and has a vertical bar on the left.

Official documentation

There already is a substantial amount of documentationwritten about Go. The Go Tutorial
[5], and the Effective Go document [2]. The website http://golang.org/doc/ is a very good
starting point for reading up on Goa. Reading these documents is certainly not required,
but is recommended.

Go comes with its own documentation in the form of a Go program called godoc. You
can use it yourself to look in the online documentation. For instance, suppose we want
to know more about the package hash. We would then give the command godoc hash.
How to read this and how you can create your own package documentation is explained
in chapter 4. TODO

We don’t explain how
to read this in that
chapter.Getting Go

There are currently (2010) no packages for Go in any Linux distribution. The route to
install Go is thus slightly longer than it could be. When Go stabilizes this situation will
change probably. For now, you need to retrieve the code from the mercurial archive and
compile Go yourself. For other Unix like systems the procedure is the same.

• First install Mercurial (to get the hg command). In Ubuntu/Debian/Fedora you must
install the mercurial package;

• For building Go you also need the packages: bison, gcc, libc6-dev, ed, gawk and make;

• Set the environment variable GOROOT to the root of your Go install:
% export GOROOT=~/go

• Then retrieve the Go source code:
% hg clone -r release https://go.googlecode.com/hg/ $GOROOT

• Set your PATH to so that the Shell can find the Go binaries:
% export PATH=$GOROOT/bin:$PATH

• Compile Go
% cd $GOROOT/src
% ./all.bash

If all goes well, you should see the following:

ahttp://golang.org/doc/ itself is served by a Go program called godoc.



viii Chapter 1: Introduction

Installed Go for linux/amd64 in /home/gobook/go.
Installed commands in /home/gobook/go/bin.
The compiler is 6g.

You now have Go installed on your system and you can start playing.

Keeping up to date

New releases are announced on the Go Nuts mailing list [12]. To update an existing tree to
the latest release, you can run:

% cd $GOROOT
% hg pull
% hg update release
% cd src
% ./all.bash

To see what you are running right now:

% cd $GOROOT
% hg identify
79997f0e5823 release/release.2010-10-20

That would be release.2010-10-20.

Origins

Go has it origins in Plan 9 [10]. Plan 9 is (or was supposed to be) the successor of Unix.
As you may know one of the core ideas of Unix is ”everything is a file”, so the read() and
write() system calls work as well on normal files as they do on I/O devices. However for
some devices this has never happened, notably network and video devices. In Plan 9 this
”everything is a file”–idea is taken to the next level and truly everything is presented to the
user as a file, including networking and video devices. This has nothing to do with Go per
se, but Plan 9 included a language called Limbo [9]. Quoting from the Limbo paper:

Limbo is a programming language intended for applications running distributed
systems on small computers. It supports modular programming, strong type
checking at compile- and run-time, inter process communication over typed
channels, automatic garbage collection, and simple abstract data types. It is
designed for safe execution even on small machines without hardware memory
protection.

That sounds a lot likeGo, and one could sayGo is a reimplementation of Limbo onUnix–like
systems like Linux. One feature of Limbo that is also included in Go is the support for cross
compiling.

Another feature Go inherited from Limbo is channels (see chapter 7). Again from the
Limbo documentation.

[A channel] is a communication mechanism capable of sending and receiving
objects of the specified type to another agent in the system. Channels may be
used to communicate between local processes; using library procedures, they
may be connected to named destinations. In either case send and receive oper-
ations may be directed to them.



Exercises ix

The channels in Go are easier to use than those in Limbo. If we dig even deeper in the his-
tory of Go we also find references to ”Newsqueak” [21], which pioneered the use of chan-
nel communication in a C–like language. Channel communication isn’t unique to these
languages, a big non–C–like language which also uses them is Erlang [13].

Figure 1.1. Chronology of Go

Newsqueak Limbo GoErlang
1994 19951986 20091943

Ken
Thompson

The whole of idea of using channels to communicate with other processes is called
Communicating Sequential Processes (CSP) and was conceived by C. A. R. Hoare [17], who
incidentally is the same man that invented QuickSort [18].

Go is the first C–like language that is widely available, runs on many different
platforms and makes concurrency easy (or easier).

Exercises

Q1. (1) Documentation

1. Go’s documentation can be read with the godoc program, which is included the Go
distribution.
godoc hash gives information about the hash package. Reading the documentation
on container gives the following result:

SUBDIRECTORIES

heap
list
ring
vector

With which godoc command can you read the documentation of vector contained
in container?





Answers xi

Answers

A1. (1) Documentation

1. The package vector is in a subdirectory of container, so you will only need godoc
container/vector.
Specific functions inside the ”Go manual” can also be accessed. For instance the
function Printf is described in fmt, but to only view the documentation concerning
this function use: godoc fmt Printf.
You can even display the source code with: godoc -src fmt Printf.



2 Basics

In Go, the code does exactly what it says on the
page.

Go Nuts mailing list
ANDREW GERRAND

There are a few things that make Go different from most other languages out there.

Clean and Simple
Go strives to keep things small and beautiful, you should be able to do a lot in only
a few lines of code;

Concurrent
Go makes it easy to ”fire off” functions to be run as very lightweight threads. These
threads are called goroutines a in Go;

Channels
Communication with these goroutines is done via channels [26][17];

Fast
Compilation is fast and execution is fast. The aim is to be as fast as C. Compilation
time is measured in seconds;

Safe
Go has garbage collection, no more free() in Go, the language takes care of this;

Standard format
A Go program can be formatted in (almost) any way the programmers want, but an
official format exist. The rule is very simple: The output of the filter gofmt is the
official endorsed format.

Postfix types
Types are given after the variable name, thus var a int, instead of int a; as one
would in C;

UTF-8
UTF-8 is everywhere, in strings and in the program code. Finally you can use Φ =
Φ + 1 in your source code;

Open Source
The Go license is completely open source, see the file LICENSE in the Go source code
distribution;

Fun
Programming with Go should be fun!

Erlang [13] also shares some of the features of Go. Notable differences between Erlang
and Go is that Erlang borders on being a functional language, where Go is an imperative
one. And Erlang runs in a virtual machine, while Go is compiled. Go also has amuchmore
Unix-like feeling to it.

aYes, that sounds a lot like coroutines, but goroutines are slightly different as we will see in chapter 7.



2 Chapter 2: Basics

Hello World

In the Go tutorial, Go is presented to the world in the typical manner: letting it print ”Hello
World” (KenThompsonandDennis Ritchie started thiswhen theypresented the C language
in the nineteen seventies). We don’t think we can do better, so here it is, ”Hello World” in
Go.

Listing 2.1. Hello world

1package main ..1

3import ”fmt” // Implements formatted I/O. ..2

5/* Print something */ ..3

6func main() { ..4

7
..5

8fmt.Printf(”Hello, world; or καληµέρα κóσµε; or こんにちは世界\n”)
9}

Lets look at the program line by line.

..1 This first line is just required. All Go files start with package <something>, package
main is required for a standalone executable;

..2 This sayswe need ”fmt” in addition tomain. A package other thanmain is commonly
called a library, a familiar concept of many programming languages (see chapter 4).
The line ends with a comment which is started with //;

..3 This is also a comment, but this one is enclosed in /* and */;

..4 Just as package mainwas required to be first, importmay come next. In Go, package
is always first, then import, then everything else. When your Go program is exe-
cuted, the first function called will be main.main(), whichmimics the behavior from
C. Here we declare that function;

..5 On line 8 we call a function from the package fmt to print a string to the screen. The
string is enclosed with ” and may contain non-ASCII characters. Here we use Greek
and Japanese.

Compiling and running code

The Go compiler is named <number>g, where the number is 6 for 64 bit Intel and 8 for 32
bit Intel. The linker has a similar naming scheme: <number>l. In this book we will use 6g
and 6l for all the compiles. To compile the code from above, we use:

% 6g helloworld.go

And then we link it with 6l:

% 6l helloworld.6

And then we run it:



Variables, types and keywords 3

% ./6.out ← The default name for a (64 bit) Go executable
Hello, world; or καληµέρα κóσµε; or こんにちは世界

Using a Makefile

Another, less laborious (once setup), way to build a Go program, is to use a Makefile. The
following one can be used to build helloworld:

Listing 2.2. Makefile for a program

1# Copyright 2009 The Go Authors. All rights reserved.
2# Use of this source code is governed by a BSD-style
3# license that can be found in the LICENSE file.

5include $(GOROOT)/src/Make.inc

7TARG=helloworld
8GOFILES=\
9helloworld.go\

11include $(GOROOT)/src/Make.cmd

At line 7 you specify the name for your compiled program and on line 9 you enumerate the
source files. Now only an invocation of make is enough to get your program compiled. Note
that Go ships with the variant of make, called gomake, which is (currently) a small wrapper
around make. As the build system for Go programsmay change in the future andmake make
go away, we use gomake. Note that this Makefile creates an executable named helloworld,
not 6.out.

Variables, types and keywords

In the next sections we will look at variables, basic types, keywords and control structures
of our new language.

Go is different from other languages in that the type of a variable is specified after
the variable name. So not: int a, but a int. When declaring a variable it is assigned the
”natural” null value for the type. This means that after var a int, a has a value of 0. With
var s string, s is assigned the zero string, which is ””.

Declaring and assigning in Go is a two step process, but they may be combined. Com-
pare the following pieces of code which have the same effect.

Listing 2.3. Declaration with =

var a int
var b bool
a = 15
b = false

Listing 2.4. Declaration with :=

a := 15
b := false

On the left we use the var keyword to declare a variable and then assign a value to
it. The code on the right uses := to do this in one step (this form may only be used inside
functions). In that case the variable type is deduced from the value. A value of 15 indicates



4 Chapter 2: Basics

an int, a value of false tells Go that the type should be bool. Multiple var declarations
may also be grouped, const and import also allow this. Note the use of parentheses:

var (
x int
b bool

)

Multiple variables of the same type can also be declared on a single line: var x, y int,
makes x and y both int variables. You can also make use of parallel assignment:

a, b := 20, 16

Which makes a and b both integer variables and assigns 20 to a and 16 to b.
A special name for a variable is _ (underscore) . Any value assigned to it, is discarded.

In this example we only assign the integer value of 35 to b and discard the value 34.

_, b := 34, 35

Declared, but otherwise unused variables are a compiler error in Go, the following code
generates this error: i declared and not used

package main
func main() {

var i int
}

Boolean types

A Boolean type represents the set of Boolean truth values denoted by the predeclared con-
stants true and false. The Boolean type is bool.

Numerical types

Go has the well known types such as int and float. These types have the appropriate
length for your machine, meaning that on a 32 bits machine they are 32 bits, and on a 64
bits machine they are 64 bits.

If you want to be explicit about the length you can have that too with int32, or uint32.
The full list for (signed and unsigned) integers is int8, int16, int32, int64 and byte, uint8,
uint16, uint32, uint64. With byte being an alias for uint8. For floating point values there
only is float32 and float64.

Note however that these types are all distinct and assigning variables which mix these
types is a compiler error, like in the following code:

Listing 2.5. Familiar types are still distinct

1package main

3func main() {
4var a int ← Generic integer type

5var b int32 ← 32 bits integer type

6a = 15
7b = a + a ← Illegal mixing of these types

8b = b + 5 ← 5 is a (typeless) constant, so this is OK

9}



Variables, types and keywords 5

Gives the error on the assignment on line 7:
types.go:7: cannot use a + a (type int) as type int32 in assignment

Whenassigning values octal, hexadecimal and the scientific notationmaybe used: 077,
0xFF, 1e3 or 6.022e23 are all valid.

Constants

Constants in Go are just that — constant. They are created at compile time, and can only
be numbers, strings or booleans; const x = 42 makes x a constant. You can use iota b to
enumerate values.

const (
a = iota
b = iota

)

The first use of iota will yield 0, so a is equal to 0, whenever iota is used again on a new
line its value is incremented with 1, so b has a value of 1.

You can even do the following, let Go repeat the use of iota:

const (
a = iota
b // implicitly ’b = iota’

)

Strings

An important other built in type is string. Assigning a string is as simple as:

s := ”Hello World!”

Strings in Go are a sequence of UTF-8 characters enclosed in double quotes (”). If you use
the single quote (’) you mean one character (encoded in UTF-8) — which is not a string in
Go.

Once assigned to a variable the string can not be changed anymore: strings in Go are
immutable. For people coming from C, the following is not legal in Go:

var s string = ”hello”
s[0] = ’c’ ← Change first char. to ’c’, this is an error

To do this in Go you will need the following:

s := ”hello”

c := []byte(s) ..1

c[0] = ’c’ ..2

s2 := string(c) ..3

fmt.Printf(”%s\n”, s2) ..4

..1 Convert s to an array of bytes, see chapter 5 section ”Conversions”;

bThe word [iota] is used in a common English phrase, ’not one iota’, meaning ’not the slightest difference’,
in reference to a phrase in the New Testament: ”until heaven and earth pass away, not an iota, not a dot, will pass
from the Law.” [28]



6 Chapter 2: Basics

..2 Change the first element of this array;

..3 Create a new string s2 with the alteration;

..4 print the string with fmt.Printf.

Complex numbers

Go has native support for complex numbers. If you use them you need a variable of the
type complex. If you need to specify the number of bits you have complex32 and complex64
for 32 and 64 bits. Complex numbers are written as re + imi, where re is the real part, im
is the imaginary part and i is the literal ’i’ (

√
−1). An example of using complex numbers:

var c complex = 5+5i;fmt.Printf(”Value is: %v”, c”)
will print: (5+5i)

Operators and built-in functions

Go supports the normal set of numerical operations, table 2.1 lists the current ones and
their relative precedence. They all associate from left to right.

Table 2.1. Operator precedence

Precedence Operator(s)

Highest * / % << >> & &^
+ - | ^
== != < <= > >=
<-
&&

Lowest ||

+ - * / and % all do what you would expect, & | ^ and &^ are bit operators for bit-wise
and, or, xor and bit clear respectively. AlthoughGo does not support operator overloading
(ormethod overloading for thatmatter), some of the built-in operators are overloaded. For
instance + can be used for integers, floats, complex numbers and strings (adding strings is
concatenating them).

A small number of functions are predefined, meaning you don’t have to include any
package to get access to them. Table 2.2 lists them all.

Table 2.2. Pre–defined functions in Go

close new panic cmplx
closed make panicnl real
len copy print imag
cap printnl

close and closed are used in channel communication and the closing of those channels,
see chapter 7 for more on this.TODO

section needs to be
written



Go keywords 7

len and cap are used on a number of different types, len is used for returning the length
of strings and the length of slices and arrays. See section ”Arrays, slices and maps” for the
details of slices and arrays and the function cap.

new is used for allocating memory for user defined data types. See section ”Allocation
with new” on page 47.

make is used for allocating memory for built-in types (maps, slices and channels). See
section ”Allocation with make” on page 47.

copy is used for copying slices. new, make and copymake their appearance in chapter 5. TODO
copy isn’t handled
therepanic and panicln are used for an exception mechanism. See the section ”Panic and

recovering” on page 26 for more. TODO
Needs to be written

print and println are low level printing functions that can be used without reverting to
the fmt package. These are mainly used for debugging.

cmplx, real and imag all deal with complex numbers. TODO
Refer to other docu-
mentation.

Go keywords

Table 2.3. Keywords in Go

break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var

Table 2.3 lists all the keywords in Go. In the following paragraphs and chapters we will
cover them. Some of these we have seen already.

• For var and const see section ”Variables, types and keywords” on page 3;

• package and import are briefly touch upon in section ” ”. in chapter 4 they are
documented in more detail.

Others deserve more text and have their own chapter/section:

• func is used to declare functions;

• return is used to return from functions, for both func and return see chapter 3 for
the details;

• go is used for concurrency (chapter 7);

• interface, see XXX;



8 Chapter 2: Basics

• select, see XXX;

• struct, see XXX;

• type, see XXX.

Syntax

Go has a C-like feel when it comes to its syntax. If youwant to put two (ormore) statements
on one line, they must be separated with a semicolon (’;’), like so:

a = 5; a = a + 1

Control structures

There are only a few control structures in Go c. For instance there is no do or while
loop, only a for. There is a (flexible) switch statement and if and switch accept an op-
tional initialization statement like that of for. There also is something called a type switch
and a multiway communications multiplexer, select (see chapter 7). The syntax is differ-
ent (from that in C): parentheses are not required and the bodies must always be brace-
delimited.

If

In Go an if looks like this:

if x > 0 { ← { is mandatory

return y
} else {

return x
}

Mandatory braces encourage writing simple if statements on multiple lines. It is good
style to do so anyway, especially when the body contains a control statement such as a
return or break.

Since if and switch accept an initialization statement, it’s common to see one used to
set up a (local) variable.

if err := file.Chmod(0664); err != nil { ← nil is like C’s NULL

log.Stderr(err) ← Scope of err is limited to if’s body

return err
}

In the Go libraries, you will find that when an if statement doesn’t flow into the next
statement-that is, the body ends in break, continue, goto, or return, the unnecessary else
is omitted.

f, err := os.Open(name, os.O_RDONLY, 0)
if err != nil {

return err
}
doSomething(f)

cThis section is copied from [2].



Control structures 9

This is a example of a common situation where code must analyze a sequence of error
possibilities. The code reads well if the successful flow of control runs down the page,
eliminating error cases as they arise. Since error cases tend to end in return statements,
the resulting code needs no else statements.

f, err := os.Open(name, os.O_RDONLY, 0)
if err != nil {

return err
}
d, err := f.Stat()
if err != nil {

return err
}
doSomething(f, d)

Syntax wise the following is illegal in Go:

if err != nil
{ ← Must be on the same line as the if

return err
}

See [2] section ”Semicolons” for the deeper reasons behind this.

Goto

Go has a goto statement — use it wisely. With goto you jump to a label which must be
defined within the current function. The labels are case sensitive. For instance a loop in
disguise:

func myfunc() {
i := 0

HERE: ← First word on a line ending with a colon is a label

println(i)
i++
goto HERE ← Jump

}

For

The Go for loop has three forms, only one of which has semicolons.

// Like a C for
for init; condition; post { }

// Like a while
for condition { }

// Like a C for(;;) (endless loop)
for { }

Short declarations make it easy to declare the index variable right in the loop.



10 Chapter 2: Basics

sum := 0
for i := 0; i < 10; i++ {

sum += i ← Short for sum = sum + i

} ← i ceases to exist after the loop

Finally, since Go has no comma operator and ++ and - - are statements not expressions,
if you want to run multiple variables in a for you should use parallel assignment.

// Reverse a
for i, j := 0, len(a)-1; i < j; i, j = i+1, j-1 { ← Parallel assignment

a[i], a[j] = a[j], a[i] ← Here too

}

Break and continue

With break you can quit loops early, break breaks the current loop.

for i := 0; i < 10; i++ {
if i > 5 {

break ← Stop this loop, making it only print 0 to 5

}
println(i)

}

With loopswithin loops you can specify a label after break. Making the label identifywhich
loop to stop:

J: for j := 0; j < 5; j++ {
for i := 0; i < 10; i++ {

if i > 5 {
break J ← Now it breaks the j-loop, not the i one

}
println(i)

}
}

With continue you begin the next iteration of the loop, skipping any remaining code.
In the same way as break, continue also accepts a label. The following prints 0 to 5.

for i := 0; i < 10; i++ {
if i > 5 {

continue ← Skip any remaining code

}
println(i)

}

Range

The keyword range can be used for loops. It can loop over slices, arrays, string, maps and
channels (see chapter 7, section ”??”). range is an iterator, that when called, returns a key-
value pair from the thing it loops over. Depending on what that is, range returns different
things.



Control structures 11

When looping over a slice or array range returns the index in the slice as the key and
value belonging to that index. Consider this code:

list := []string{”a”, ”b”, ”c”, ”d”, ”e”, ”f”} ..1

for k, v := range list { ..2

// do what you want with k and v
}

..1 Create a slice (see 2 on page 13) of strings.

..2 Use range to loop over them.With each iteration range will return the index as int
and the key as a string, starting with 0 and ”a”.

You can also use range on strings directly. Then it will break out the individual Unicode
characters by parsing the UTF-8 (erroneous encodings consume one byte and produce the
replacement rune d U+FFFD). The loop:

for pos, char := range ”aΦx” {
fmt.Printf(”character ’%c’ starts at byte position %d\n”, char, pos)

}

prints

character ’a’ starts at byte position 0
character ’Φ’ starts at byte position 1
character ’x’ starts at byte position 3

Switch

Go’s switch is very flexible. The expressions need not be constants or even integers, the
cases are evaluated top to bottom until a match is found, and if the switch has no expres-
sion it switches on true. It’s therefore possible – and idiomatic – to write an if-else-if-
else chain as a switch.

func unhex(c byte) byte {
switch {
case ’0’ <= c && c <= ’9’:

return c - ’0’
case ’a’ <= c && c <= ’f’:

return c - ’a’ + 10
case ’A’ <= c && c <= ’F’:

return c - ’A’ + 10
}
return 0

}

There is no automatic fall through, you can however use fallthrough to make do just that.
Without fallthrough:

dIn the UTF-8 world characters are sometimes called runes. Mostly, when people talk about characters, they
mean 8 bit characters. As UTF-8 characters may be up to 32 bits the word rune is used.



12 Chapter 2: Basics

switch i {
case 0: // empty case body
case 1:

f() // f is not called when i == 0!
}

And with:

switch i {
case 0: fallthrough
case 1:

f() // f is called when i == 0!
}

With default you can specify an action when none of the other cases match.

switch i {
case 0:
case 1:

f()
default:

g() // called when i is not 0 or 1
}

Cases can be presented in comma-separated lists.

func shouldEscape(c byte) bool {
switch c {
case ’ ’, ’?’, ’&’, ’=’, ’#’, ’+’: ← , as ”or”

return true
}
return false

}

Here’s a comparison routine for byte arrays that uses two switch statements:

// Compare returns an integer comparing the two byte arrays
// lexicographically.
// The result will be 0 if a == b, -1 if a < b, and +1 if a > b
func Compare(a, b []byte) int {

for i := 0; i < len(a) && i < len(b); i++ {
switch {
case a[i] > b[i]:

return 1
case a[i] < b[i]:

return -1
}

}
// String are equal except for possible tail
switch {
case len(a) < len(b):

return -1
case len(a) > len(b):

return 1



Arrays, slices and maps 13

}
return 0 // Strings are equal

}

Arrays, slices and maps

Storing multiple values in a list can be done by utilizing arrays, or their more flexible
cousin: slices. A dictionary or hash type is also available, it is called a map in Go.

Arrays

Anarray is defined by: [n]<type>, wheren is the length of the array. Assigning, or indexing
an element in the array is done with square brackets:

var arr = [10]int
arr[0] = 42
arr[1] = 13
fmt.Printf(”The first element is %d\n”, arr[0])

Array types like var arr = [10]int have a fixed size. The size is part of the type. They can’t
grow, because then theywould have a different type. Also arrays are values: Assigning one
array to another copies all the elements. In particular, if you pass an array to a function,
it will receive a copy of the array, not a pointer to it.

To declare an array you can use the following: var a [3]int, to initialize it to some-
thing else than zero, use a composite literal: a := [3]int{1, 2, 3} and this can be short-
ened to a := [...]int{1, 2, 3}, where Go counts the elements automatically. Note that A composite literal

allows you to assign
a value directly to an
array, slice or map.

all fields must be specified. So if you are using multidimensional arrays you have to do
quite some typing:

a := [2][2]int{ [2]int{1,2}, [2]int{3,4} }

Which is the same as:

a := [2][2]int{ [...]int{1,2}, [...]int{3,4} }

When declaring arrays you always have to type something in between the square
brackets, either a number or three dots (...).

Slices
TODO
Examples, with slice,
slice[1:] slice[2:3] etc

A slice refers to an under laying array. What makes slices different from arrays is that a
slice is a pointer to an array; slices are reference types, which means that if you assign
one slice to another, both refer to the same underlying array. For instance, if a function
takes a slice argument, changes it makes to the elements of the slice will be visible to the
caller, analogous to passing a pointer to the underlying array. A slice is always coupled to
an array that has a fixed size. For slices we define a capacity and a length.

Figure 2.1 depicts the following Go code. First we create an array ofm + 1 elements
of the type int: var array[m+1]int
Next, we create a slice from this array: slice := array[0:n+1]
And now we have:

• len(slice)== n, cap(slice)== m ;



14 Chapter 2: Basics

• len(array)== cap(array)== m .

Figure 2.1. Array versus slice

. . .

len == cap

array

. . .

cap

slice

len 

0

0

n

n

m

m

In the code listed in 2.6 we dare to do the impossible on line 8 and try to allocate some-
thing beyond the capacity (maximum length of the under laying array) andwe are greeted
with a runtime error.

Listing 2.6. Arrays and slices

1package main

3func main() {
4var array [100]int // Create array, index from 0 to 99
5slice := array[0:99] // Create slice, index from 0 to 98

7slice[98] = ’a’ // OK
8slice[99] = ’a’ // Error: ”throw: index out of range”
9}

Maps

Many other languages have a similar type built-in, Perl has hashes Python has its dictio-
naries and C++ also has maps (in lib) for instance. In Go we have the map type. A map can be
thought of as an array indexed by strings (in its most simple form). In the following listing
we define a mapwhich converts from a string (month abbreviation) to an int – the number
of days in thatmonth. The generic way to define amap iswith: map[<from type>]<to type>

monthdays := map[string]int{
”Jan”: 31, ”Feb”: 28, ”Mar”: 31,
”Apr”: 30, ”May”: 31, ”Jun”: 30,
”Jul”: 31, ”Aug”: 31, ”Sep”: 30,
”Oct”: 31, ”Nov”: 30, ”Dec”: 31, ← The comma here is required

}

For indexing (searching) in themap, we use square brackets, for example supposewewant
to print the number of days in December: fmt.Printf(”%d\n”, monthdays[”Dec”])
If you are looping over an array, slice, string, or map a range clause help you again, which
returns the key and corresponding value with each invocation.



Exercises 15

year := 0
for _, days := range monthdays { // key is not used

year += days
}
fmt.Printf(”Numbers of days in a year: %d\n”, year)

Adding elements to the map would be done as:

monthday[”Undecim”] = 30 // Add a month
monthday[”Feb”] = 29 // Overwrite entry - for leap years

To test for existence , you would use the following[19]:

var value int
var present bool

value, present = monthday[”Jan”] // Does it exist? If so present
has the value

// Or better and more Go like
v, ok := monthday[”Jan”] // Hence, the ”comma ok” form

And finally you can remove elements from the map:

monthday[”Mar”] = 0, false // Deletes ”Mar”, always rains anyway

Which looks a bit like a reverse ”comma ok” form.

Exercises

Q2. (1) For-loop

1. Create a simple loop with the for construct. Make it loop 10 times and print out
the loop counter with the fmt package.

2. Put the body of the loop in a separate function.

3. Rewrite the loop from 1. to use goto. The keyword formay not be used.

Q3. (1) FizzBuzz

1. Solve this problem, called the Fizz-Buzz [24] problem:

Write a program that prints the numbers from 1 to 100. But formultiples
of three print ”Fizz” instead of the number and for the multiples of five
print ”Buzz”. For numbers which are multiples of both three and five
print ”FizzBuzz”.

Q4. (1) Strings

1. Create a Go program that prints the following (up to 100 characters):

A
AA
AAA
AAAA
AAAAA
AAAAAA
AAAAAAA
...



16 Chapter 2: Basics

2. Create a program that counts the numbers of characters e in this string:
asSASA ddd dsjkdsjs dk
Make it also output the number of bytes in that string. Hint. Check out the utf8
package.

3. Extend the program from the previous question to replace the three runes at posi-
tion 4 with ’abc’.

4. Write a Go program that reverses a string, so ”foobar” is printed as ”raboof”.

eIn the UTF-8 world characters are sometimes called runes. Mostly, when people talk about characters, they
mean 8 bit characters. As UTF-8 characters may be up to 32 bits the word rune is used.



Answers 17

Answers

A2. (1) For-loop

1. There are a multitude of possibilities, one of the solutions could be:

Listing 2.7. Simple for-loop

package main

import ”fmt”

func main() {
for i := 0; i < 10; i++ {

fmt.Printf(”%d\n”, i)
}

}

Lets compile this and look at the output.

% 6g for.go && 6l -o for for.8
% ./for
0
1
.
.
.
9

2. Next we put the body of the loop - the fmt.Printf - in a separate function.

Listing 2.8. Loop calls function

package main

import ”fmt”

func main() {
for i := 0; i < 10; i++ {

show(i)
}

}

func show(j int) {
fmt.Printf(”%d\n”, j)

}

The presented program should be self explanatory. Note however the ”j int” in-
stead of the more usual ”int j” in the function definition.

A3. (1) FizzBuzz

1. A possible solution to this (relative) simple problem is the following program.



18 Chapter 2: Basics

Listing 2.9. Fizz-Buzz

package main

import ”fmt”

func main() {
const (

FIZZ = 3
BUZZ = 5

)
for i := 1; i < 100; i++ {

p := false
if i%FIZZ == 0 {

fmt.Printf(”Fizz”)
p = true

}
if i%BUZZ == 0 {

fmt.Printf(”Buzz”)
p = true

}
if !p {

fmt.Printf(”%v”, i)
}
fmt.Println()

}
}

A4. (1) Strings

1. This program is a solution:

Listing 2.10. Strings

package main

import ”fmt”

func main() {
str := ”A”
for i := 0; i < 100; i++ {

fmt.Printf(”%s\n”, str)
str = str + ”A”

}
}

2. To answer this question we need some help of the utf8 package. First we check
the documentation with godoc utf8 | less. When we read the documentation
we notice func RuneCount(p []byte)int. Secondly we can convert string to a byte
slice with



Answers 19

str := ”hello”
b := []byte(str) ← Conversion, see page 50

Putting this together leads to the following program.

Listing 2.11. Runes in strings

package main

import (
”fmt”
”utf8”

)

func main() {
str := ”dsjkdshdjsdh....js”
fmt.Printf(”String %s\nLenght: %d, Runes: %d\n”, str,

len([]byte(str)), utf8.RuneCount([]byte(str)))
}

3. Reversing a string can be done as follows:

Listing 2.12. Reverse a string

package main

func main() {
s := ”foobar”
a := []byte(s)
// Reverse a
for i, j := 0, len(a)-1; i < j; i, j = i+1, j-1 {

a[i], a[j] = a[j], a[i]
}
println(string(a))

}



3 Functions

I’m always delighted by the light touch and
stillness of early programming languages. Not
much text; a lot gets done. Old programs read
like quiet conversations between a well-spoken
research worker and a well- studied
mechanical colleague, not as a debate with a
compiler. Who’d have guessed sophistication
bought such noise?

RICHARD P. GABRIEL

Functions are the basic building blocks in Go programs; all interesting stuff happens in
them. A function is declared as follows:

Listing 3.1. A function declaration

.

.
.
.1 .

.
.2 .

.
.3 .

.
.4 .

.
.5 .

.
.6

type mytype int ← New type, see chapter 5

func (p mytype) funcname(q int) (r,s int) { return 0,0 }

..1 The keyword func is used to declare a function;

..2 A function can be defined to work on a specific type, amore common name for such
a function is method. This part is called a receiver and it is optional. See chapter 6;

..3 funcname is the name of your function;

..4 The variable q of type int is the input parameter. The parameters are passed pass-
by-valuemeaning they are copied;

..5 The variables r and s are the named return parameters for this function. Note
that functions in Go can have multiple return values. See section ”Multiple return
values” on page 22 for more information. If you want the return parameters not to
be named you only give the types: (int,int). If you have only one value to return
you may omit the parentheses. If your function is a subroutine and does not have
anything to return you may omit this entirely;

..6 This is the function’s body, note that return is a statement so the braces around the
parameter(s) are optional.

Here are a two examples, the first is a function without a return value, the second is a
simple function that returns its input.

func subroutine(in int) {
return

}



Scope 21

func identity(in int) int {
return in

}

Functions can be declared in any order you wish, the compiler scans the entire file before
execution. So function prototyping is a thing of the past in Go.

Go disallows nested functions. You can however work around this by using anony-
mous functions, see section ”Functions as values” on page 26 in this chapter. TODO

types in function, a
nono. Maybe in pack-
age chapter.Scope

Variables declared outside any functions are global in Go, those defined in functions are
local to those functions. If names overlap — a local variable is declared with the same
name as a global one — the local variable hides the global one when the current function
is executed.

Listing 3.2. Local scope

.
package main

var a = 6

func main() {
p()
q()
p()

}

func p() {
println(a)

}

func q() {
a := 5 ← Definition

println(a)
}

Listing 3.3. Global scope

.
package main

var a = 6

func main() {
p()
q()
p()

}

func p() {
println(a)

}

func q() {
a = 5 ← Assignment

println(a)
}

In listing 3.2 we introduce a local variable a in the function q(). This local a is only
visible in q(). That is why the code will print: 656. In listing 3.3 no new variables are
introduced, there is only a global a. Assigning a new value to will be globally visible. This
code will print: 655

In the following example we call g() from f():

Listing 3.4. Scope when calling functions from functions

package main

var a int

func main() {
a = 5



22 Chapter 3: Functions

println(a)
f()

}

func f() {
a := 6
println(a)
g()

}

func g() {
println(a)

}

The printout will be: 565. A local variable is only valid when we are executing the
function in which it is defined.

Multiple return values

One of Go’s unusual features is that functions and methods can return multiple values
(Python can do this too). This can be used to improve on a couple of clumsy idioms in C
programs: in-band error returns (such as -1 for EOF) and modifying an argument.

In C, a write error is signaled by a negative count with the error code secreted away in
a volatile location. In Go, Write returns a count and an error: ”Yes, you wrote some bytes
but not all of them because you filled the device”. The signature of *File.Write in package
os is:

func (file *File) Write(b []byte) (n int, err Error)

and as the documentation says, it returns the number of bytes written and a non-nil Error
when n != len(b). This is a common style in Go.

A similar approach obviates the need to pass a pointer to a return value to simulate a
reference parameter. Here’s a simple-minded function to grab a number from a position
in a byte array, returning the number and the next position.

func nextInt(b []byte, i int) (int, int) {
x := 0
// Naively assume everything is a number
for ; i < len(b); i++ {

x = x*10 + int(b[i])-’0’
}
return x, i

}

You could use it to scan the numbers in an input array a like this:

a := []byte{’1’, ’2’, ’3’, ’4’}
var x int
for i := 0; i < len(a); { ← No i++

x, i = nextInt(a, i)
println(x)

}



Named result parameters 23

Without having tuples as a native type, multiple return values is the next best thing to
have. You can return precisely what youwant without overloading the domain space with
special values to signal errors.

Named result parameters

The return or result parameters of a Go function can be given names and used as regular
variables, just like the incoming parameters. When named, they are initialized to the zero
values for their typeswhen the function begins; if the function executes a return statement
with no arguments, the current values of the result parameters are used as the returned
values. Using this features enables you (again) to do more with less code a.

The names are not mandatory but they can make code shorter and clearer: they are
documentation. If we name the results of nextInt it becomes obvious which returned int
is which.

func nextInt(b []byte, pos int) (value, nextPos int) { /* ... */ }

Because named results are initialized and tied to an unadorned return, they can simplify
as well as clarify. Here’s a version of io.ReadFull that uses them well:

func ReadFull(r Reader, buf []byte) (n int, err os.Error) {
for len(buf) > 0 && err == nil {

var nr int
nr, err = r.Read(buf)
n += nr
buf = buf[nr:len(buf)]

}
return

}

In the following example we declare a simple function which calculates the factorial Some text in this sec-
tion comes from [11].value of a value x.

func Factorial(x int) int { ← func Factorial(x int) (int) is also OK

if x == 0 {
return 1

} else {
return x * Factorial(x - 1)

}
}

So you could also write factorial as:

func Factorial(x int) (result int) {
if x == 0 {
result = 1

} else {
result = x * Factorial(x - 1)

}
return

}

aThis is a motto of Go; ”Domore with less code”.



24 Chapter 3: Functions

When we use named result values, the code is shorter and easier to read. You can also
write a function with multiple return values:

func fib(n) (val int, pos int) {
if n == 0 {

val = 1
pos = 0

} else if n == 1 {
val = 1
pos = 1

} else {
v1, _ := fib(n-1)
v2,_ := fib(n-2)
val = v1 + v2
pos = n

}
return

}

Deferred code

Suppose you have a function in which you open a file and perform various writes and
reads on it. In such a function there are often spots where you want to return early. If you
do that, you will need to close the file descriptor you are working on. This often leads to
the following code:

Listing 3.5. Without defer

func ReadWrite() bool {
file.Open(”file”)
// Do you thing
if failureX {

file.Close()
return false

}

if failureY {
file.Close()
return false

}
file.Close()
return true

}

Here a lot of code is repeated. To overcome this — and do more in less code — Go has
the defer statement. After defer you specify a function which is called just before a return
from the function is executed.

The code above could be rewritten as follows. This makes the functionmore readable,
shorter and puts the Close right next to the Open.

Listing 3.6. With defer



Variadic parameters 25

func ReadWrite() bool {
file.Open(”file”)
defer file.Close() ← file.Close() is the function

// Do you thing
if failureX {

return false ← Close() is now done automatically

}
if failureY {

return false ← And here too

}
return true

}

You can put multiple functions on the ”deferred list”, like this example from [2]:

for i := 0; i < 5; i++ {
defer fmt.Printf(”%d ”, i)

}

Deferred functions are executed in LIFO order, so the above code prints: 4 3 2 1 0. TODO
Rob Pike: Closures
are just local func-
tions

With defer you can even change return values, provided that you are using named
result parameters and a function literal, i.e:

Listing 3.7. Function literal

defer func() {
/* ... */

}() ← () is needed here

In that (unnamed) function you can access any named return parameter:

Listing 3.8. Access return values within defer

func f() (ret int) { ← ret is initialized with zero

defer func() {
ret++ ← Increment ret with 1

}()
return 0 ← 1 not 0 will be returned!

}

Variadic parameters
TODO
Extend this section a
bit

Functions that take variadic parameters are functions that have a variable number of pa-
rameters. To do this, you first need to declare your function to take variadic arguments:

Listing 3.9. Variadac function declaration

func myfunc(arg ... int) {}

The arg ... int instructs Go to see this as a function that takes a variable number of ar-
guments. Note that these arguments all have the type int. Inside your function’s body the
variable arg is a slice of ints:

for _, n := range arg {
fmt.Printf(”And the number is: %d\n”, n)

}



26 Chapter 3: Functions

If you don’t specify the type of the variadic argument it defaults to the empty interface
interface{} (see ”??” in chapter 5).

Functions as values

As with almost everything in Go, functions are also just values. They can be assigned to
variables as follows:

Listing 3.10. Anonymous function

package main

func main() {
a := func() { // Define a nameless function and assign to a
println(”Hello”)

} // No () here
a() // Call the function

}

If we use fmt.Printf(”%T\n”, a) to print the type of a, it prints func().
Functions–as–values may also be used in other places, like in maps. Here we convert

from integers to functions:

Listing 3.11. Functions as values in maps

var xs = map[int]func() int{
1: func() int { return 10 },
2: func() int { return 20 },
3: func() int { return 30 }, ← Mandatory ,

/* ... */
}

Or you can write a function that takes a function as its parameter, for example a Map func-
tion that works on int slices. This is left as an exercise for the reader, see exercise Q10 on
page 27.

Panic and recovering
TODO

Exercises

Q5. (3) Integer ordering

1. Write a function that returns it parameters in the right, numerical (ascending) or-
der:
f(7,2)→ 2,7
f(2,7)→ 2,7

Q6. (4) Scope

1. What is wrong with the following program?

1package main

3import ”fmt”



Exercises 27

5func main() {
6for i := 0; i < 10; i++ {
7fmt.Printf(”%v\n”, i)
8}
9fmt.Printf(”%v\n”, i)
10}

Q7. (5) Stack

1. Create a simple stack which can hold a fixed amount of ints. It does not have to
grow beyond this limit. Define both a push – put something on the stack – and a
pop – retrieve something fro the stack – function. The stack should be a LIFO (last
in, first out) stack.

Figure 3.1. A simple LIFO stack

push(k)

pop() k
k

i

l

m

i++

i--

0

2. Bonus. Write a Stringmethodwhich converts the stack to a string representation.
This way you can print the stack using: fmt.Printf(”My stack %v\n”, stack)
The stack in the figure could be represented as: [0:m] [1:l] [2:k]

Q8. (5) Var args

1. Write a function that takes a variable numbers of ints and prints each integer on
a separate line TODO

BETTERQ9. (5) Fibonacci

1. The Fibonacci sequence starts as follows: 1, 1, 2, 3, 5, 8, 13, . . . Or in mathemati-
cal terms: x1 = 1;x2 = 1;xn = xn−1 + xn−2 ∀n > 2.
Write a function that takes an int value and gives thatmany terms of the Fibonacci
sequence.

Q10. (4) Map function A map()-function is a function that takes a function and a list. The
function is applied to each member in the list and a new list containing these calculated
values is returned. Thus:

map(f(), (a1, a2, . . . , an−1, an)) = (f(a1), f(a2), . . . , f(an−1), f(an))

1. Write a simple map()-function in Go. It is sufficient for this function only to work
for ints.

2. Expand your code to also work on a list of strings.





Answers 29

Answers

A5. (3) Integer ordering

1.

A6. (4) Scope

1. The program does not even compile, because i on line 9 is not defined: i is only
defined within the for-loop. To fix this the function main() should become:

func main() {
var i int
for i = 0; i < 10; i++ {

fmt.Printf(”%v\n”, i)
}
fmt.Printf(”%v\n”, i)

}

Now i is defined outside the for-loop and still visible after wards. This code will
print the numbers 0 through 10.

A7. (5) Stack

1. First we define a new type that represents a stack; we need an array (to hold the
keys) and an index, which points to the last element. Our small stack can only hold
10 elements.

type stack struct { ← stack is not exported

i int
data [10]int

}

Next we need the push and pop functions to actually use the thing. First we show
the wrong solution! In Go data passed to functions is passed-by-value meaning a
copy is created and given to the function. The first stab for the function push could
be:

func (s stack) push(k int) { ← Works on copy of argument

if s.i+1 > 9 {
return

}
s.data[s.i] = k
s.i++

}

The function works on the s which is of the type stack. To use this we just call
s.push(50), to push the integer 50 on the stack. But the push function gets a copy
of s, so it is not working the real thing. Nothing gets pushed to our stack this way,
for example the following code:

var s stack ← make s a simple stack variable

s.push(25)
fmt.Printf(”stack %v\n”, s);
s.push(14)



30 Chapter 3: Functions

fmt.Printf(”stack %v\n”, s);

prints:

stack [0:0]
stack [0:0]

To solve this we need to give the function push a pointer to the stack. This means
we need to change push from
func (s stack)push(k int)→ func (s *stack)push(k int)
We should now use new() (see ”Allocation with new” in chapter 5) to create a
pointer to a newly allocated stack, so line 1 from the example above needs to be
s := new(stack)
And our two functions become:

Listing 3.12. The push and pop functions

func (s *stack) push(k int) {
s.data[s.i] = k
s.i++

}

func (s *stack) pop() int {
s.i--
return s.data[s.i]

}

Which we then use as follows

Listing 3.13. Stack usage

func main() {
var s stack
s.push(25)
s.push(14)
fmt.Printf(”stack %v\n”, s)

}

2. While thiswas a bonus question, having the ability to print the stackwas very valu-
able when writing the code for this exercise. According to the Go documentation
fmt.Printf(”%v”) can print any value (%v) that satisfies the Stringer interface.
For this to work we only need to define a String() function for our type:

Listing 3.14. stack.String()

func (s stack) String() string {
var str string
for i := 0; i <= s.i; i++ {

str = str + ”[” +
strconv.Itoa(i) + ”:” + strconv.Itoa(s.data[i

]) + ”]”
}



Answers 31

return str
}

A8. (5) Var args

1. For this we need the ...-syntax to signal we define a function that takes an arbi-
trary number of arguments.

Listing 3.15. A function with variable number of arguments

package main

import ”fmt”

func main() {
printthem(1, 4, 5, 7, 4)
printthem(1, 2, 4)

}

func printthem(numbers ... int) { ← numbers is now a slice of ints

for _, d := range numbers {
fmt.Printf(”%d\n”, d)

}
}

A9. (5) Fibonacci

1. The following program calculates the Fibonacci numbers.

Listing 3.16. Fibonacci function in Go

package main

import ”fmt”

func fibonacci(value int) []int {

x := make([]int, value) ..1

x[0], x[1] = 1, 1 ..2

for n := 2; n < value; n++ {

x[n] = x[n-1] + x[n-2] ..3

}

return x ..4

}

func main() {

for _, term := range fibonacci(10) { ..5

fmt.Printf(”%v ”, term)
}

}



32 Chapter 3: Functions

..1 We create an array to hold the integers up to the value given in the function
call;

..2 Starting point of the Fibonicai calculation;

..3 xn = xn−1 + xn−2;

..4 Return the entire array;

..5 Using the range keyword we ”walk” the numbers returned by the fibonacci
funcion. Here up to 10. And we print them.

A10. (4) Map function

Listing 3.17. A Map function

1. func Map(f func(int) int, l []int) []int {
j := make([]int, len(l))
for k, v := range l {

j[k] = f(v)
}
return j

}

func main() {
m := []int{1, 3, 4}
f := func(i int) int {

return i * i
}
fmt.Printf(”%v”, (Map(f, m)))

}

2. Answer to question but now with strings





4 Packages

^

Answer to whether there is a bitwise negation
operator.

KEN THOMPSON

Packages are a collection of functions and data, they are like the Perl packages[8]. You
declare a package with the package keyword. Note that (at least one of) the filename(s)
should match the package name. Go packages may consist of multiple files, but they share
the package <name> line. Lets define a package even in the file even.go.

Listing 4.1. A small package

package even ← Start our own namespace

func Even(i int) bool { ← Exported function

return i % 2 == 0
}

func odd(i int) bool { ← Private function

return i % 2 == 1
}

Names that start with a capital letter are exported and may be used outside your package,
more on that later. We can now use the package as follows in our own program myeven.go:

Listing 4.2. Use of the even package

package main

import ( ..1

”./even” ..2

”fmt” ..3

)

func main() {
i := 5

fmt.Printf(”Is %d even? %v\n”, i, even.Even(i)) ..4

}

..1 Import the following packages;

..2 The local package even;

..3 The official fmt package;

..4 Use the function from the even package. The syntax for accessing a function from a
package is <package>.Function.



Building a package 35

Now we just need to compile and link, first the package, then myeven.go and then link
it:

% 6g even.go # package
% 6g myeven.go # our program
% 6l -o myeven myeven.6

And test it:

% ./myeven
Is 5 even? false

In Go, a function from a package is exported (visible outside the package, i.e. public)
when the first letter of the function name is a capital, hence the function name Even. If we
change our myeven.go on line 7 to using to unexported function even.odd:
fmt.Printf(”Is %d even? %v\n”, i, even.odd(i))

We get an error when compiling, because we are trying to use a private function:

myeven.go:7: cannot refer to unexported name even.odd
myeven.go:7: undefined: even.odd

To summarize:

• Public functions have a name starting with a capital letter;

• Private function have a name starting with a lowercase letter.

This convention also holds true for other names (new types, global variables) you de-
fine in a package.

Building a package

The create a package that other people can use (by just using import ”even”) we first need
to create a directory to put the package files in.

% mkdir even
% cp even.go even/

Next we can use the following Makefile, which is adapted for our even package.

Listing 4.3. Makefile for a package

1# Copyright 2009 The Go Authors. All rights reserved.
2# Use of this source code is governed by a BSD-style
3# license that can be found in the LICENSE file.

5include $(GOROOT)/src/Make.inc

7TARG=even
8GOFILES=\
9even.go\

11include $(GOROOT)/src/Make.pkg



36 Chapter 4: Packages

Note that on line 7 we define our even package and on the lines 8 and 9 we enter the
files which make up the package. Also note that this is not the same Makefile setup as we
used in section ”Using a Makefile” in chapter 2. The last line with the include statement is
different.

If we now issue gomake, a file named ”_go_.6”, a directory named ”_obj/” and a file
inside ”_obj/” called ”even.a” is created. The file even.a is a static library which holds the
compiled Go code. With gomake install the package (well, only the even.a) is installed in
the official package directory:

% make install
cp _obj/even.a $GOROOT/pkg/linux_amd64/even.a

After installing we can change our import from ”./even” to ”even”.
But what if you do not want to install packages in the official Go directory, or maybe

you do not have the permission to do so? When using 6/8g you can use the I-flag to spec-
ify an alternate package directory. With this flag you can leave your import statement
as-is (import ”even”) and continue development in your own directory. So the following
commands should build (and link) our myeven program with our package.

% 6g -I even/_obj myeven.go # building
% 6l -L even/_obj myeven.6 # linking

Identifiers

Names are as important in Go as in any other language. In some cases they even have
semantic effect: for instance, the visibility of a name outside a package is determined by
whether its first character is upper case. It’s therefore worth spending a little time talking
about naming conventions in Go programs.

The convention that is used was to leave well-known legacy not-quite-words alone
rather than try to figure out where the capital letters go. Atoi, Getwd, Chmod. Camelcasing
works best when you have whole words to work with: ReadFile, NewWriter, MakeSlice.

Package names

When a package is imported (with import), the package name becomes an accessor for the
contents. After

import ”bytes”

the importing package can talk about bytes.Buffer. It’s helpful if everyone using the pack-
age can use the same name to refer to its contents, which implies that the package name
should be good: short, concise, evocative. By convention, packages are given lower case,
single-word names; there should be no need for underscores or mixedCaps. Err on the
side of brevity, since everyone using your package will be typing that name. And don’t
worry about collisions a priori. The package name is only the default name for imports.
With the above import you can use bytes.Buffer. With

import bar ”bytes”

it becomes bar.Buffer. So it does need not be unique across all source code, and in the
rare case of a collision the importing package can choose a different name to use locally.



Initialization 37

In any case, confusion is rare because the file name in the import determines just which
package is being used.

Another convention is that the package name is the base name of its source directory;
the package in src/pkg/container/vector is imported as container/vector but has name vec-
tor, not container_vector and not containerVector.

The importer of a package will use the name to refer to its contents, so exported names
in the package can use that fact to avoid stutter. For instance, the buffered reader type
in the bufio package is called Reader, not BufReader, because users see it as bufio.Reader,
which is a clear, concise name. Moreover, because imported entities are always addressed
with their package name, bufio.Reader does not conflict with io.Reader. Similarly, the
function to make new instances of ring.Ring—which is the definition of a constructor in
Go—would normally be called NewRing, but since Ring is the only type exported by the
package, and since the package is called ring, it’s called just New. Clients of the package see
that as ring.New. Use the package structure to help you choose good names.

Another short example is once.Do; once.Do(setup) reads well and would not be im-
proved bywriting once.DoOrWaitUntilDone(setup). Long names don’t automaticallymake
things more readable. If the name represents something intricate or subtle, it’s usually
better to write a helpful doc comment than to attempt to put all the information into the
name.

Finally, the convention in Go is to use MixedCaps or mixedCaps rather than under-
scores to write multiword names.

Initialization

Every source file in a package can define an init() function. This function is called after
the variables in the package have gotten their value. The init() function can be used to
setup state before the execution begins. TODO

Variable section

Documenting packages
This text is copied
from [2].Every package should have a package comment, a block comment preceding the package

clause. For multi-file packages, the package comment only needs to be present in one file,
and any one will do. The package comment should introduce the package and provide
information relevant to the package as a whole. It will appear first on the godoc page and
should set up the detailed documentation that follows. An example from the official regexp
package:

/*
The regexp package implements a simple library for
regular expressions.

The syntax of the regular expressions accepted is:

regexp:
concatenation ’|’ concatenation

*/
package regexp

Each defined (and exported) function should has a small line of text documenting the
behavior of the function, from the fmt package:



38 Chapter 4: Packages

// Printf formats according to a format specifier and writes to standard output.
func Printf(format string, a ...interface) (n int, errno os.Error) {

Testing packages

InGo it is customary towrite (unit) tests for your package. Writing tests involves the testing
package and the program gotest. Both have excellent documentation. When you include
tests with your package keep in mind that has to be build using the standard Makefile (see
section ”Building a package”).

The testing itself is carried out with gotest. The gotest program run all the test func-
tions. Without any defined tests for our even package a gomake test, yields:

% gomake test
no test files found (*_test.go)
make: *** [test] Error 2

Let us fix this by defining a test in a test file. Test files reside in the package directory
and are named *_test.go. Those test files are just like other Go program, but gotest will
only execute the test functions. Each test function has the same signature and its name
should start with Test:

func TestXxx(t *testing.T) ← Test<Capital>restOftheName

When writing test you will need to tell gotest that a test has failed or was successful.
A successful test function just returns. When the test fails you can signal this with the
following functions [4]. These are the most important ones (see godoc testing for more):

func (t *T) Fail()

Failmarks the test function as having failed but continues execution.

func (t *T) FailNow()

FailNow marks the test function as having failed and stops its execution. Execution will
continue at the next test. So any other test in this file are skipped too.

func (t *T) Log(args ...interface{})

Log formats its arguments using default formatting, analogous to Print(), and records the
text in the error log.

func (t *T) Fatal(args ...interface{})

Fatal is equivalent to Log() followed by FailNow().
Putting all this together we can write our test. First we pick a name: even_test.go.

Then we add the following contents:

Listing 4.4. Test file for even package

1package even

3import ”testing”

5func TestEven(t *testing.T) {
6if true != Even(2) {
7t.Log(”2 should be even!”)



Useful packages 39

8t.Fail()
9}
10}

Note that we use package even on line 1, the test fall in the same namespace as the pack-
age we are testing. This not only convenient, but also allows tests of unexported function
and structures. We then import the testing package and on line 5 we define the only test
function in this file. The displayed Go code should not hold any surprises: we check if the
Even function works OK. Now, the moment we’ve been waiting for, executing the test:

% gomake test
6g -o _gotest_.6 even.go even_test.go
rm -f _test/even.a
gopack grc _test/even.a _gotest_.6
PASS

Our test ran and reported PASS. Success! To show how a failed test look we redefine our
test function:

// Entering the twilight zone
func TestEven(t *testing.T) {

if false != Even(2) {
t.Log(”2 should be odd!”)
t.Fail()

}
}

We now get:

--- FAIL: even.TestEven
2 should be odd!

FAIL
make: *** [test] Error 1

And you can act accordingly (by fixing the test for instance).

Writing new packages should go hand in hand with writing (some) documen-
tation and test functions. It will make your code better and it shows that your
really put in the effort.

Useful packages

The standard Go repository includes a huge number of packages and it is even possible to
install more along side your current Go installation. We cannot comment on each package,
but the following a worth a mention: a

fmt
Package fmt implements formatted I/O with functions analogous to C’s printf and
scanf. The format verbs are derived from C’s but are simpler. Some verbs (%-
sequences) that can be used:

aThe descriptions are copied from the packages’ godoc.



40 Chapter 4: Packages

%v
The value in a default format. when printing structs, the plus flag (%+v) adds
field names;

%#v
a Go-syntax representation of the value.

%T
a Go-syntax representation of the type of the value;

io
This package provides basic interfaces to I/O primitives. Its primary job is to wrap
existing implementations of suchprimitives, such as those in package os, into shared
public interfaces that abstract the functionality, plus some other related primitives.

bufio
This package implements buffered I/O. It wraps an io.Reader or io.Writer object,
creating another object (Reader or Writer) that also implements the interface but
provides buffering and some help for textual I/O.

sort
The sort package provides primitives for sorting arrays and user-defined collec-
tions.

strconv
The strconv package implements conversions to and from string representations of
basic data types.

os
The ospackage provides a platform-independent interface to operating system func-
tionality. The design is Unix-like.

flag
The flag package implements command-line flag parsing.

json
The json package implements encoding and decoding of JSON objects as defined in
RFC 4627.

template
Data-driven templates for generating textual output such as HTML.

Templates are executed by applying them to a data structure. Annotations in the
template refer to elements of the data structure (typically a field of a struct or a key
in amap) to control execution andderive values to be displayed. The templatewalks
the structure as it executes and the ”cursor” @ represents the value at the current
location in the structure.

http
The http package implements parsing of HTTP requests, replies, and URLs and pro-
vides an extensible HTTP server and a basic HTTP client.

unsafe
The unsafe package contains operations that step around the type safety of Go pro-
grams.



Exercises 41

reflect
The reflect package implements run-time reflection, allowing a program to manip-
ulate objects with arbitrary types. The typical use is to take a value with static type
interface{} and extract its dynamic type information by calling Typeof, which re-
turns an object with interface type Type. That contains a pointer to a struct of type
*StructType, *IntType, etc. representing the details of the underlying type. A type
switch or type assertion can reveal which (see chapter 6, section ”Introspection”).

exec
The exec package runs external commands.

Exercises

Q11. (2) Stack as package See the 7 exercise. In this exercisewewant to create a separate
package for that code.

1. Create a proper package for your stack implementation, Push, Pop and the Stack
type need to be exported.

2. Which official Go package could also be used for a (FIFO) stack?

Q12. (7) Calculator

1. Create a reverse polish calculator. Use your stack package.

2. Bonus. Rewrite your calculator to use the the package you found for question 2.





Answers 43

Answers

A11. (2) Stack as package

1. There are a few details that should be changed to make a proper package for our
stack. First, the exported function should begin with a capital letter and so should
Stack. So the full package (including the String() function becomes

Listing 4.5. Stack in a package

package stack

import (
”strconv”

)

type Stack struct {
i int
data [10]int

}

func (s *Stack) Push(k int) {
s.data[s.i] = k
s.i++

}

func (s *Stack) Pop() (ret int) {
s.i--
ret = s.data[s.i]

}

func (s *Stack) String() string {
var str string
for i := 0; i < s.i; i++ {

str = str + ”[” + strconv.Itoa(i) + ”:”
+ strconv.Itoa(s.data[i]) + ”]”

}
return str

}

A12. (7) Calculator

1. This is one answer

Listing 4.6. A (rpn) calculator

package main

import (
”bufio”



44 Chapter 4: Packages

”os”
”strconv”
”fmt”

)

var reader *bufio.Reader = bufio.NewReader(os.Stdin)
var st = new(Stack)

type Stack struct {
i int
data [10]int

}

func (s *Stack) push(k int) {
if s.i+1 > 9 {

return
}
s.data[s.i] = k
s.i++

}

func (s *Stack) pop() (ret int) {
s.i--
if s.i < 0 {

s.i = 0
return 0

}
ret = s.data[s.i]
return ret

}

func (s *Stack) String() string {
var str string
for i := 0; i < s.i; i++ {

str = str + ”[” +
strconv.Itoa(i) + ”:” + strconv.Itoa(s.data[i

]) + ”]”
}
return str

}

func main() {
for {

s, err := reader.ReadString(’\n’)
var token string
if err != nil {

return
}
for _, c := range s {

switch {



Answers 45

case c >= ’0’ && c <= ’9’:
token = token + string(c)

case c == ’ ’:
r, _ := strconv.Atoi(token)
st.push(r)
token = ””

case c == ’+’:
fmt.Printf(”%d\n”, st.pop()+st.pop())

case c == ’*’:
fmt.Printf(”%d\n”, st.pop()*st.pop())

case c == ’-’:
p := st.pop()
q := st.pop()
fmt.Printf(”%d\n”, q-p)

case c == ’q’:
return

default:
//error

}
}

}
}

2. The container/vector package would be a could candidate. It even comes with Push
and Pop functions predefined. The changes needed to our program are minimal to
say the least, the following unified diff shows the differences:

--- calc.go 2010-05-16 10:19:13.886855818 +0200
+++ calcvec.go 2010-05-16 10:13:35.000000000 +0200
@@ -5,11 +5,11 @@

”os”
”strconv”
”fmt”

- ”./stack”
+ ”container/vector”
)

var reader *bufio.Reader = bufio.NewReader(os.Stdin)
-var st = new(Stack)
+var st = new(vector.IntVector)

func main() {
for {

Only two lines need to be changed. Nice.



5 Beyond the basics

Go has pointers but not pointer arithmetic. You
cannot use a pointer variable to walk through
the bytes of a string.

Go For C++ Programmers
GO AUTHORS

Go has pointers. There is however no pointer arithmetic, so they act more like references
than pointers that you may know from C. Pointers are are useful. Remember that when
you call a function in Go, the variables are pass-by-value. So, for efficiency and the possi-
bility to modify a passed value in functions we have pointers.

Just like in C you declare a pointer by prefixing the type with an ’*’: var p *int. Now p
is a pointer to an integer value. All newly declared variables are assigned their zero value
and pointers are no difference. A newly declared, or just a pointer that points to nothing
has a nil-value. In other languages this is often called a NULL pointer in Go it is just nil.
To make a pointer point to something you can use the address-of operator (&), which we
do on line 5:

Listing 5.1. Make use of a pointer

1var p *int
2fmt.Printf(”%v”, p) ← Prints nil

4var i int ← Declare integer variable i

5p = &i ← Make p point to i

7fmt.Printf(”%v”, p) ← Prints something like 0x7ff96b81c000a

More general: *X is a pointer to an X; [3]X is an array of three Xs. The types are therefore
really easy to read just read out the names of the typemodifiers: [] declares an array slice;
’*’ declares a pointer; [size] declares an array. So []*[3]*X is an array slice of pointers to
arrays of three pointers to Xs (also see figure 5.1).

Figure 5.1. Pointers and types, the values v all have type X

[v0] 

*X v 

[3]X   

[]X 

[]*[3]*X 

. . .
  

[v1] 

  

[v2] 

  

[v0]   [v2] 

. . .
  

[n0]   [n2] 

[k0] 
[k1] 
[k2] 

v0 
v1 
v2 

Dereferencing a pointer is done by prefixing the pointer variable with ’*’:



Allocation 47

Listing 5.2. Dereferencing a pointer

p = &i ← Take the address of i

*p = 8 ← Change the value of i

fmt.Printf(”%v\n”, *p) ← Prints 8

fmt.Printf(”%v\n”, i) ← Idem

As said, there is no pointer arithmetic, so if you write: *p++, it is interpreted as (*p)++:
first deference and then increment the value.

Allocation

Go has garbage collection, meaning that you don’t have to worry about memory allocation
and deallocation. Of course almost every language since 1980 has this, but it is nice to see
garbage collection in a C-like language.

Go has two allocation primitives, new and make. They do different things and apply
to different types, which can be confusing, but the rules are simple. The following sec-
tions show how to handle allocation in Go and hopefully clarifies the somewhat artificial
distinction between new and make.

Allocation with new

Thebuilt-in function new is essentially the sameas its namesakes in other languages: new(T)
allocates zeroed storage for a new item of type T and returns its address, a value of type
*T. In Go terminology, it returns a pointer to a newly allocated zero value of type T. This is
important to remember:

new returns pointers.

This means a user of the data structure can create one with new and get right to work.
For example, the documentation for bytes.Buffer states that ”the zero value for Buffer is
an empty buffer ready to use.” Similarly, sync.Mutex does not have an explicit constructor
or Initmethod. Instead, the zero value for a sync.Mutex is defined to be an unlockedmutex.

The zero-value-is-useful property works transitively. Consider this type declaration.

type SyncedBuffer struct {
lock sync.Mutex
buffer bytes.Buffer

}

Values of type SyncedBuffer are also ready to use immediately upon allocation or just dec-
laration. In this snippet, both p and v will work correctly without further arrangement.

p := new(SyncedBuffer) // type *SyncedBuffer
var v SyncedBuffer // type SyncedBuffer

Allocation with make

Back to allocation. The built-in function make(T, args) serves a purpose different from
new(T). It creates slices, maps, and channels only, and it returns an initialized (not zero)
value of type T, not *T. The reason for the distinction is that these three types are, under
the covers, references to data structures that must be initialized before use. A slice, for



48 Chapter 5: Beyond the basics

example, is a three-item descriptor containing a pointer to the data (inside an array), the
length, and the capacity; until those items are initialized, the slice is nil. For slices, maps,
and channels, make initializes the internal data structure and prepares the value for use.

make returns initialized (non zero) values.

For instance, make([]int, 10, 100) allocates an array of 100 ints and then creates a
slice structure with length 10 and a capacity of 100 pointing at the first 10 elements of the
array. In contrast, new([]int) returns a pointer to a newly allocated, zeroed slice structure,
that is, a pointer to a nil slice value.

These examples illustrate the difference between new() and make().

var p *[]int = new([]int) // allocates slice structure; *p == nil
// rarely useful

var v []int = make([]int, 100) // v refers to a new array of 100 ints

// Unnecessarily complex:
var p *[]int = new([]int)
*p = make([]int, 100, 100)

// Idiomatic:
v := make([]int, 100)

Remember that make() applies only to maps, slices and channels and does not return a
pointer. To obtain an explicit pointer allocate with new().

Constructors and composite literals

Sometimes the zero value isn’t good enough and an initializing constructor is necessary,
as in this example taken from the package os.

func NewFile(fd int, name string) *File {
if fd < 0 {

return nil
}
f := new(File)
f.fd = fd
f.name = name
f.dirinfo = nil
f.nepipe = 0
return f

}

There’s a lot of boiler plate in there. We can simplify it using a composite literal, which is
an expression that creates a new instance each time it is evaluated.

func NewFile(fd int, name string) *File {
if fd < 0 {

return nil
}
f := File{fd, name, nil, 0} ← Create a new File

return &f ← Return the address of f

}



Defining your own 49

Note that it’s perfectly OK to return the address of a local variable; the storage associated
with the variable survives after the function returns. In fact, taking the address of a com-
posite literal allocates a fresh instance each time it is evaluated, so we can combine these
last two lines.

return &File{fd, name, nil, 0}

The fields of a composite literal are laid out in order and must all be present. However,
by labeling the elements explicitly as field:value pairs, the initializers can appear in any
order, with the missing ones left as their respective zero values. Thus we could say

return &File{fd: fd, name: name}

As a limiting case, if a composite literal contains no fields at all, it creates a zero value for
the type. The expressions new(File) and &File{} are equivalent.

Composite literals can also be created for arrays, slices, and maps, with the field la-
bels being indices or map keys as appropriate. In these examples, the initializations work
regardless of the values of Enone, Eio, and Einval, as long as they are distinct.

ar := [...]string {Enone: ”no error”, Eio: ”Eio”, Einval: ”invalid
argument”}

sl := []string {Enone: ”no error”, Eio: ”Eio”, Einval: ”invalid
argument”}

ma := map[int]string{Enone: ”no error”, Eio: ”Eio”, Einval: ”invalid
argument”}

Defining your own
TODO
tags in structsOf course Go allows you to define new types, it does this with the type keyword:

type foo int

Creates a new type foo which acts like an int. Creating more sophisticated types is done
with the struct keyword. An example would be when we want record somebody’s name
(string) and age (int) in a single structure and make it a new type:

Listing 5.3. Structures

package main

import ”fmt”

type NameAge struct {
name string ← Not exported

age int ← Not exported, Age would be exported

}

func main() {
a := new(NameAge)
a.name = ”Pete”
a.age = 42

fmt.Printf(”%v\n”, a)
}



50 Chapter 5: Beyond the basics

Apropos, the output of fmt.Printf(”%v\n”, a) is

Pete, 42

That is nice! Go knows how to print your structure. If you only want to print one, or a
few, fields of the structure you’ll need to use .<field name>. For example to only print the
name:

fmt.Printf(”%s”, a.name) ← %s formats a string

TODO
Struct with exported
fields Methods

If you create functions that works on your newly defined type, you can take two routes:

1. Create a function that takes the type as an argument.

func doSomething(in1 *NameAge, in2 int) { /* ... */ }

This is (you might have guessed) a function call.

2. Create a function that works on the type (see receiver in listing 3.1):

func (in1 *NameAge) doSomething(in2 int) { /* ... */ }

This is amethod call, which can be used as:

var n *NameAge
n.doSomething(2)

But keep the following in mind, this is quoted from [3]:

If x is addressable and &x’s method set contains m, x.m() is shorthand for (&x).
m().

In the above case this means that the following is not an error:

var n NameAge ← Not a pointer

n.doSomething(2)

Here Gowill search themethod list for n of type NameAge, come up empty andwill then also
search themethod list for the type *NameAge andwill translate this call to (&n).doSomething
(2).

Conversions

Sometimes you want to convert a type to another type. In C this is known as casting a
value to another type. This is also possible in Go, but there are some rules. For starters,
converting from one value to another is done by functions and not all conversions are
allowed.



Conversions 51

Table 5.1. Valid conversions

From xb []byte xi []int s string f float i int

To

[]byte × []byte(s)
[]int × []int(s)
string string(xb) string(xi) ×
float × float(i)
int int(f) ×

• From a string to a slice of bytes or ints.

mystring := ”hello this is string”

byteslice := []byte(mystring)

Converts to a byte slice, each byte contains the integer value of the corresponding
byte in the string. Note that as strings in Go are encoded in UTF-8 some characters
in the string may end up in 1, 2, 3 or 4 bytes.

intslice := []int(mystring)

Converts to an int slice, each int contains a Unicode code point. Every character
from the string is corresponds to one integer.

• From a slice of bytes or ints to a string.

b := []byte{’h’,’e’,’l’,’l’,’o’} ← Composite literal

s := string(b)
i := []int{257,1024,65}
r := string(i)

For numeric values the following conversion are defined:

• Convert to a integer with a specific (bit) length: uint8(int);

• From floating point to an integer value: int(float). This discards the fraction part
from the floating point value;

• The other way around: float(int);

User defined types

TODO
Make the text flow
more nicely into this
paragraph.

TODO
CHECK THIS.

We create two types here Foo and Bar, where Bar is an alias for Foo:

type foo struct { int }
type bar foo

Then we:

var b bar = bar{1} ← Declare b to be a bar

var f foo = b ← Assign b to f



52 Chapter 5: Beyond the basics

Which fails on the last line with:
cannot use b (type bar) as type foo in assignment

This can be fixed with a conversion:

var f foo = foo(b)

Exercises

Q13. (6) Map function with interfaces Use the answer from exercise Q10, but nowmake
it generic using interfaces.
Q14. (6) Pointers

1. Suppose we have defined the following structure:

type Person struct {
name string
age int

}

What is the difference between the following two lines?

var p1 Person
p2 := new(Person)

2. What is the difference between the following two allocations?

func Set(t *T) {
x = t

}

and

func Set(t T) {
x= &t

}

Q15. (5) Pointers and reflection

1. One of the last paragraphs in section ”Introspection and reflection” on page 61, has
the following words:

The code on the right works OK and sets the member Name to ”Albert
Einstein”. Of course this only works when you call Set() with a pointer
argument.

Why is this the case?

Q16. (6) Linked List

1. Make use of the package container/list to create a (double) linked list. Push the
values 1, 2 and 4 to the list and then print it.

2. Create your own linked list implementation. And perform the same actions is in
question 1

Q17. (6) Cat

1. Write a program which mimics Unix program cat. For those who don’t know this
program, the following invocation displays the contents of the file blah:

% cat blah



Exercises 53

2. Make it support the n flag, where each line is numbered.

Q18. (8) Method calls

1. Suppose we have the following program:

package main

import ”container/vector”

func main() {
k1 := vector.IntVector{}
k2 := &vector.IntVector{}
k3 := new(vector.IntVector)
k1.Push(2)
k2.Push(3)
k3.Push(4)

}

What are the types of k1, k2 and k3?

2. Now, this programcompiles and runsOK.All the Push operationswork even though
the variables are of a different type. The documentation for Push says:

func (p *IntVector) Push(x int) Push appends x to the end of the vector.

So the receiver has to be of type *IntVector, why does the code above work then?





Answers 55

Answers

A13. (6) Map function with interfaces

Listing 5.4. A generic map function in Go

package main
import ”fmt”

/* define the empty interface as a type */
type e interface{}

func mult2(f e) e {
switch f.(type) {
case int:

return f.(int) * 2
case string:

return f.(string) + f.(string) + f.(string) + f.(string)
}
return f

}

func Map(n []e, f func(e) e) []e {
m := make([]e, len(n))
for k, v := range n {

m[k] = f(v)
}
return m

}

func main() {
m := []e{1, 2, 3, 4}
s := []e{”a”, ”b”, ”c”, ”d”}
mf := Map(m, mult2)
sf := Map(s, mult2)
fmt.Printf(”%v\n”, mf)
fmt.Printf(”%v\n”, sf)

}

A14. (6) Pointers

1. In first line: var p1 Person allocates a Person-value to p1. The type of p1 is Person.
The second line: p2 := new(Person) allocates memory and assigns a pointer to p2.
The type of p2 is *Person.

2. In the second function, x points to a new (heap-allocated) variable twhich contains
a copy of whatever the actual argument value is.
In the first function, x points to the same thing that t does, which is the same thing
that the actual argument points to.
So in the second function, we have an ”extra” variable containing a copy of the
interesting value.



56 Chapter 5: Beyond the basics

A15. (5) Pointers and reflection

1. When called with a non-pointer argument the variable is a copy (call-by-value). So
you are doing the reflection voodoo on a copy. And thus you are not changing the
original value, but only this copy.

A16. (6) Linked List

1.

2.

A17. (6) Cat

1. A solution might be:

Listing 5.5. A cat program

package main

import (
”os”
”fmt”
”bufio”
”flag”

)

var numberFlag = flag.Bool(”n”, false, ”number each line”)

func cat(r *bufio.Reader) {
i := 1
for {

buf, e := r.ReadBytes(’\n’)
if e == os.EOF {

break
}
if *numberFlag {

fmt.Fprintf(os.Stdout, ”%5d %s”, i, buf)
i++

} else {
fmt.Fprintf(os.Stdout, ”%s”, buf)

}
}
return

}

func main() {
flag.Parse()
if flag.NArg() == 0 {

cat(bufio.NewReader(os.Stdin))
}
for i := 0; i < flag.NArg(); i++ {

f, e := os.Open(flag.Arg(i), os.O_RDONLY, 0)



Answers 57

if e != nil {
fmt.Fprintf(os.Stderr, ”%s: error reading from

%s: %s\n”,
os.Args[0], flag.Arg(i), e.String())

continue
}
cat(bufio.NewReader(f))

}
}

A18. (8) Method calls

1. The type of k1 is vector.IntVector. Why? We use a composite literal (the {}), so
we get a value of that type back. The variable k2 is of *vector.IntVector, because
we take the address (&) of the composite literal. And finally k3 has also the type
*vector.IntVector, because new returns a pointer to the type.

2. The answer is given in [3] in the section ”Calls”, where among other things it says:

A method call x.m() is valid if the method set of (the type of) x contains
m and the argument list can be assigned to the parameter list of m. If
x is addressable and &x’s method set contains m, x.m() is shorthand for
(&x).m().

In other words because k1 is addressable and *vector.IntVector does have the
Push method, the call k1.Push(2) is translated by Go into (&k1).Push(2) which
makes the type system happy again (and you too — now you know this).a

aAlso see section ”Methods” in this chapter.



6 Interfaces

I have this phobia about having my body
penetrated surgically. You know what I mean?

eXistenZ
TED PIKUL

In Go, the word interface is overloaded to mean several different things. Every type hasThe following text is
from [23]. Written by
Ian Lance Taylor —
one of the authors of
Go.

an interface, which is the set of methods defined for that type. This bit of code defines a
struct type S with one field, and defines two methods for S.

Listing 6.1. Defining a struct and methods on it

type S struct { i int }
func (p *S) Get() int { return p.i }
func (p *S) Put(v int) { p.i = v }

You can also define an interface type, which is simply a set of methods. This defines an
interface I with two methods:

type I interface {
Get() int
Put(int)

}

An interface type is a set of methods.

S is a valid implementation for I, because it defines the two methods which I requires.
Note that this is true even though there is no explicit declaration that S implements I. A Go
program canuse this fact via yet anothermeaning of interface, which is an interface!value:

func f(p I) { fmt.Println(p.Get()); p.Put(1) }

Here the variable p holds a value of interface type. Because S implements I, we can call f
passing in a pointer to a value of type S:

var s S; f(&s)

The reason we need to take the address of s, rather than a value of type S, is because we
defined the methods on s to operate on pointers, see the code above in listing 6.1. This is
not a requirement—we could have defined themethods to take values— but then the Put
method would not work as expected.

The fact that you do not need to declare whether or not a type implements an inter-
face means that Go implements a form of duck typing[27]. This is not pure duck typing,
because when possible the Go compiler will statically check whether the type implements
the interface. However, Go does have a purely dynamic aspect, in that you can convert
from one interface type to another. In the general case, that conversion is checked at run-
time. If the conversion is invalid — if the type of the value stored in the existing interface
value does not satisfy the interface to which it is being converted — the program will fail
with a runtime error.



Interfaces 59

Interfaces in Go are similar to ideas in several other programming languages: pure ab-
stract virtual base classes in C++, typeclasses in Haskell or duck typing in Python. However
there is no other language which combines interface values, static type checking, dynamic
runtime conversion, and no requirement for explicitly declaring that a type satisfies an
interface. The result in Go is powerful, flexible, efficient, and easy to write.

Empty interface

For example, since every type satisfies the empty interface: interface {}. We can create
a generic function which has an empty interface as its argument:

Listing 6.2. A function with a empty interface argument

func g(any interface{}) int {
return any.(I).Get()

}

The return any.(I).Get() is the tricky bit in this function. The value any has type inter-
face, meaning no guarantee of any methods at all: it could contain any type. The .(I) is
a type switch which converts any to an interface of type I. If we have that type we can
invoke the Get() function. So if we create a new variable of the type *S, we can just call
g(), because *S also implements the empty interface.

s = new(S)
fmt.Println(g(s));

The call to g will work fine and will print 0. If we however invoke g() with a value that
does not implement I we have a problem:

Listing 6.3. Failing to implement an interface

i := 5 // make i a ”lousy” int
fmt.Println(g(i))

This compiles OK, but when we run this we get slammed with:
panic: interface conversion: int is not main.I: missing method Get
Which is completely true, the built-in type int does not have a Get() function.

Methods

Methods are functions that have an receiver (see chapter 3). You can define methods on
any type (except the built-ins like int) can have methods. You can make an integer type
with its own methods. For example:

type Foo int

func (self Foo) Emit() {
fmt.Printf(”%v”, self)

}

type Emitter interface {
Emit()

}

Doing this on built-in (are types defined in other package) types yields:



60 Chapter 6: Interfaces

Listing 6.4. Failure extending built-in types

func (i int) Emit() {
fmt.Printf(”%d”, i)

}

cannot define new methods
on non-local type int

Listing 6.5. Failure extending non-local types

func (a *net.AddrError) Emit() {
fmt.Printf(”%v”, a)

}

cannot define new methods
on non-local type net.AddrError

Another thing about the receiver; it can not be a defined for interface types, doing so
results in a invalid receiver type ... compiler error. The authoritative word from the
language spec [3]:

The receiver type must be of the form T or *Twhere T is a type name. T is called
the receiver base type or just base type. The base type must not be a pointer or
interface type and must be declared in the same package as the method.

Interface names

By convention, one-method interfaces are named by the method name plus the -er suffix:
Reader, Writer, Formatter etc.

There are a number of such names and it’s productive to honor them and the function
names they capture. Read, Write, Close, Flush, String and so on have canonical signatures
and meanings. To avoid confusion, don’t give your method one of those names unless it
has the same signature and meaning. Conversely, if your type implements a method with
the samemeaning as amethod on awell-known type, give it the same name and signature;
call your string-converter method String not ToString.Text copied from [2].

Introspection

In a program, you can discover the dynamic type of an interface variable by using a switch.
Such a type switch uses the syntax of a type assertion with the keyword type inside thetype switch

parentheses. If the switch declares a variable in the expression, the variable will have the
corresponding type in each clause.

Listing 6.6. Dynamically find out the type

package main

type PersonAge struct { ..1

name string
age int

}

type PersonShoe struct { ..2

name string
shoesize int

}

func main() {
p1 := new(PersonAge)
p2 := new(PersonShoe)



Introspection 61

WhichOne(p1)
WhichOne(p2)

}

func WhichOne(x interface{}) { ..3

switch t := x.(type) { ..4

case *PersonAge: ..5

println(”Age person”)
case *PersonShoe:

println(”Shoe person”)
}

}

..1 First we define two structures as a new type, PersonAge;

..2 And PersonShoe;

..3 This function must accept both types as valid input, so we use the empty Interface,
which every type implements;

..4 The type switch: (type);

..5 When allocated with new it’s a pointer. So we check for *PersonAge. If WhichOne()
was called with a non pointer value, we should check for PersonAge.

The following is another example of performing a type switch, but this time checking
for more (built-in) types:

Listing 6.7. A more generic type switch

switch t := interfaceValue.(type) { ← The type switch

case bool:
fmt.Printf(”boolean %t\n”, t)

case int:
fmt.Printf(”integer %d\n”, t)

case *bool:
fmt.Printf(”pointer to boolean %t\n”, *t)

case *int:
fmt.Printf(”pointer to integer %d\n”, *t)

default:
fmt.Printf(”unexpected type %T”, t) // %T prints type

}

Introspection and reflection

In the following example we want to look at the ”tag” (here named ”namestr”) defined in
the type definition of Person. To do this we need the reflect package (there is no other way
in Go). Keep in mind that looking at a tag means going back the type definition. So we use
the reflectpackage to figure out the type of the variable and then access the tag.



62 Chapter 6: Interfaces

Listing 6.8. Introspection using reflection

.

.
.
.1 .

.
.2 .

.
.3 .

.
.4 .

.
.5

type Person struct {
name string ”namestr”
age int

}

p1 := new(Person) ← new returns a pointer to Person

ShowTag(p1) ← ShowTag() is now called with this pointer

func ShowTag(i interface{}) {
switch t := reflect.NewValue(i).(type) { ← Type assert on reflect value

case *reflect.PtrValue: ← Hence the case for *reflect.PtrValue

tag := t.Elem().Type().(*reflect.StructType).Field(0).Tag

..1 We are dealing with a PtrValue and according to the documentationa:

func (v *PtrValue) Elem() Value
Elem returns the value that v points to. If v is a nil pointer, Elem returns
a nil Value.

wecanuse Elem() to get the type the pointer points to. In this case *reflect.StructValue.
We have also used reflect.NewValue(i) for the type assertion, so that we get back
types in the *reflect namespace;

..2 On a Value we can use the function Type() which returns reflect.Type;

..3 Again according to the documentation, we have:

…which returns an objectwith interface type Type. That contains a pointer
to a struct of type *StructType, *IntType, etc. representing the details of
the underlying type. A type switch or type assertion can reveal which.

So we can access your specific type as a member of this struct. Which we do with
(*reflect.StructType);

..4 A StructType has a number of methods, one of which is Field(n)which returns the
nth field of a structure. The type of this return is a StructField;

..5 The struct StructField has a Tagmemberwhich returns the tag-name as a string. So
on the 0th field we can unleash .Tag to access this name: Field(0).Tag. This finally
gives us namestr.

To make the difference between looking a types and values more clear, that a look at
the following code:

Listing 6.9. Reflection and the type and value

func show(i interface{}) {

agodoc reflect



Introspection 63

switch t := i.(type) {
case *Person:
r := reflect.NewValue(i) ← Enter the world of reflection

tag := ..1

r.(*reflect.PtrValue).Elem().Type().(*reflect.StructType).Field
(0).tag

nam := ..2

r.(*reflect.PtrValue).Elem().(*reflect.StructValue).Field(0)\
newline.(*reflect.StringValue).Get()

}
}

..1 Here we want to get the ”tag”, which means going for the type. Thus we need
Elem().Type().(*reflect.StructType) to get to it;

..2 Now we want to get access to the value of one of the members and we employ
Elem().(*reflect.StructValue) to get to it. Now we have arrived at the structure.
Then we go the the first field Field(0), tell reflect is a *reflect.StringValue and
invoke the Get()method on it.

Figure 6.1. Pealing away the layers using reflection. Going from
a *Person via *reflect.PtrValue using the methods described in
godoc reflect to get the actual string contained deep within.

*reflect.PtrValue
.Elem()

*reflect.Type
.(*reflect.StructValue)

*reflect.StructValue

.FieldByName("Name")
*reflect.StructField

.(*reflect.StringValue)
*reflect.StringValue

.Get()
"Albert Einstein""Albert Einstein"

Reflection works by pealing off layers once you have got your hands on a Value in
the reflection world.

Setting a valueworks similarly as getting a value, but onlyworks on exportedmembers.
Again some code:



64 Chapter 6: Interfaces

Listing 6.10. Reflect with private member

type Person struct {
name string ”namestr”
age int
}

func Set(i interface{}) {
switch t := i.(type) {
case *Person:
r := reflect.NewValue(i)
r.(*reflect.PtrValue).Elem().
(*reflect.StructValue).
FieldByName(”name”).
(*reflect.StringValue).
Set(”Albert Einstein”)

}
}

Listing 6.11. Reflect with public member

type Person struct {
Name string ”namestr” ←
age int
}

func Set(i interface{}) {
switch t := i.(type) {
case *Person:
r := reflect.NewValue(i)
r.(*reflect.PtrValue).Elem().
(*reflect.StructValue).
FieldByName(”Name”). ←
(*reflect.StringValue).
Set(”Albert Einstein”)
}

}

The code on the left compiles and runs, but when you run it, you are greeted with a stack
trace and a runtime error:
panic: cannot set value obtained via unexported struct field
The code on the right works OK and sets the member Name to ”Albert Einstein”. Of course
this only works when you call Set() with a pointer argument.

Exercises

Q19. (6) Interfaces and compilation

1. The code in listing 6.3 on page 59 compiles OK — as stated in the text. But when
you run it you’ll get a runtime error, so something is wrong. Why does the code
compile cleanly then?



Answers 65

Answers

A19. (6) Interfaces and compilation

1. The code compiles because an integer type implements the empty interface and
that is the check that happens at compile time.
A proper way to fix this, is to test if such an empty interface can be converted and
if so, call the appropriatemethod. The Go code that defines the function g in listing
6.2 – repeated here:

func g(any interface{}) int { return any.(I).Get() }

Should be changed to become:

func g(any interface{}) int {
if v, ok := any.(I); ok { // Check if any can be converted

return v.Get() // If so invoke Get()
}
return -1 // Just so we return anything

}

If g() is called now there are no run-time errors anymore. The idiom used is called
”comma ok” in Go.



7 Concurrency

• Parallelism is about performance;

• Concurrency is about program design.

Google IO 2010
ROBE PIKE

In this chapter we will show off Go’s ability for concurrent programming using channels
and goroutines. Goroutines are the central entity in Go’s ability for concurrency. But what
is a goroutines? From [2]:

They’re called goroutines because the existing terms — threads, coroutines,
processes, and so on — convey inaccurate connotations. A goroutine has a
simple model: it is a function executing in parallel with other goroutines in
the same address space. It is lightweight, costing little more than the alloca-
tion of stack space. And the stacks start small, so they are cheap, and grow by
allocating (and freeing) heap storage as required.

A goroutine is a normal function, except that you start it with the keyword go.

ready(”Tee”, 2) ← Normal function call

go ready(”Tee”, 2) ← Ready() started as goroutine

The following idea for a programwas taken from [20]. We runa function as two goroutines,
the goroutines wait for an amount of time and them print something to the screen. On the
lines 14 and 15 we start the goroutines. The main function waits long enough, so that both
goroutines will have printed their text. Right now we wait for 5 seconds (time.Sleep()
counts in ns) on line 17, but in fact we have no idea how long we should wait until all
goroutines have exited.

Listing 7.1. Go routines in action

8func ready(w string, sec int) {
9time.Sleep(int64(sec) * 1e9)
10fmt.Println(w, ”is ready!”)
11}

13func main() {
14go ready(”Tee”, 2)
15go ready(”Coffee”, 1)
16fmt.Println(”I’m waiting”)
17time.Sleep(5 * 1e9)
18}

Listing 7.1 outputs:

I’m waiting # right away
Coffee is ready! # after 1 minute
Tee is ready! # after 2 minutes



Concurrency 67

If we did not wait for the goroutines (i.e. remove line 17) the programwould be termi-
nated immediately and any running goroutines would die with it. To fix this we need some
kind ofmechanismwhich allows us to communicate with the goroutines. This mechanism
is available to us in the form of channels. A channel can be compared to a two-way pipe
in Unix shells: you can send to and receive values from it. Those values can only be of a
specific type: the type of the channel. If we define a channel, we must also define the type
of the values we can send on the channel. Note that we must use make to create a channel:

ci := make(chan int)
cs := make(chan string)
cf := make(chan interface{})

Makes ci a channel on which we can send and receive integers, makes cs a channel for
strings and cf a channel for types that satisfy the empty interface. Sending on a channel
and receiving from it, is done with the same operator: <-. Depending on the operands it
figures out what to do:

ci <- 1 ← Send the integer 1 to the channel ci

<-ci ← Receive an integer from the channel ci

i := <-ci ← Receive from the channel ci and storing it in i

Lets put this to use.

Listing 7.2. Go routines and a channel

1var c chan int ..1

3func ready(w string, sec int) {
4time.Sleep(int64(sec) * 1e9)
5fmt.Println(w, ”is ready!”)

6c <- 1 ..2

7}

9func main() {i

10c = make(chan int) ..3

11go ready(”Tee”, 2) ..4

12go ready(”Coffee”, 1)
13fmt.Println(”I’m waiting, but not too long”)

14<-c ..5

15<-c ..6

16}
TODO
Do this with range,
use select later

..1 Declare c to be a variable that is a channel of ints. That is: this channel can move
integers. Note that this variable is global so that the goroutines have access to it;

..2 Send the integer 1 on the channel c;

..3 Initialize c;

..4 Start the goroutines with the keyword go;

..5 Wait until we receive a value from the channel. Note that the value we receive is
discarded;



68 Chapter 7: Concurrency

..6 Two goroutines, two values to receive.

There is still some remaining ugliness; wehave to read twice from the channel (lines 14 and
15). This is OK in this case, but what if we don’t know how many goroutines we started?
This is where another Go built-in comes in: select. With select you can (among other
things) listen for incoming data on a channel.

Using select in our program does not really make it shorter, because we run too few
goroutines. We remove the lines 14 and 15 and replace them with the following:

Listing 7.3. Using select

14L: for {
15select {
16case <-c:
17i++
18if i > 1 {
19break L
20}
21}
22}

TODO
block ’n stuff, close ’n
closed Make it run in parallel

While our goroutines were running concurrent, they were not running in parallel. When
you do not tell Go anything there can only be one goroutine running at a time. With
runtime.GOMAXPROCS(n) you can set the number of goroutines that can run in parallel.
From the documentation:

GOMAXPROCS sets the maximum number of CPUs that can be executing si-
multaneously and returns the previous setting. If n < 1, it does not change the
current setting. This call will go away when the scheduler improves.

If you do not want to change any source code you can also set an environment variable
GOMAXPROCS to the desired value.

Exercises

Q20. (4) Channels

1. Modify the program you created in exercise Q2 to use channels, in other words,
the function called in the body should now be a goroutine and communication
should happen via channels. You should not worry yourself on how the goroutine
terminates.

2. There are a few annoying issues left if you resolve question 1. One of the problems
is that the goroutine isn’t neatly cleaned up when main.main() exits. And worse,
due to a race condition between the exit of main.main() and main.shower() not all
numbers are printed. It should print up until 9, but sometimes it prints only to 8.
Adding a second quit-channel you can remedy both issues. Do this.a

Q21. (7) Fibonacci II

aYou will need the select statement.



Exercises 69

1. This is the same exercise as the one given page 27 in exercise 9. For completeness
the complete question:

The Fibonacci sequence starts as follows: 1, 1, 2, 3, 5, 8, 13, . . . Or in
mathematical terms: x1 = 1;x2 = 1;xn = xn−1 + xn−2 ∀n > 2.

Write a function that takes an int value and gives that many terms of
the Fibonacci sequence.

But now the twist: You must use channels.





Answers 71

Answers

A20. (4) Channels

1. A possible program is:

Listing 7.4. Channels in Go

1package main

3import ”fmt”

5func main() {
6ch := make(chan int)
7go shower(ch)
8for i := 0; i < 10; i++ {
9ch <- i
10}
11}

13func shower(c chan int) {
14for {
15j := <-c
16fmt.Printf(”%d\n”, j)
17}
18}

We start of in the usual way, then at line 6 we create a new channel of ints. In
the next line we fire off the function showerwith the ch variable as it argument, so
that we may communicate with it. Next we start our for-loop (lines 8-10) and in
the loop we send (with <-) our number to the function (now a goroutine) shower.
In the function shower we wait (as this blocks) until we receive a number (line
15). Any received number is printed (line 16) and then continue the endless loop
started on line 14.

2. An answer is

Listing 7.5. Adding an extra quit channel

1package main

3import ”fmt”

5func main() {
6ch := make(chan int)
7quit := make(chan bool)
8go shower(ch, quit)
9for i := 0; i < 10; i++ {
10ch <- i
11}
12quit <- false // or true, does not matter



72 Chapter 7: Concurrency

13}

15func shower(c chan int, quit chan bool) {
16for {
17select {
18case j := <-c:
19fmt.Printf(”%d\n”, j)
20case <-quit:
21break
22}
23}
24}

On line 20 we read from the quit channel and we discard the value we read. We
could have used q := <-quit, but then we would have used the variable only once
— which is illegal in Go. Another trick you might have pulled out of your hat may
be: _ = <-quit. This is valid in Go, but the Go idiom favors the one given on line
20.

A21. (7) Fibonacci II

1. The following program calculates the Fibonacci numbers using channels.

Listing 7.6. A Fibonacci function in Go

package main
import ”fmt”

func dup3(in <-chan int) (<-chan int, <-chan int, <-chan int) {
a, b, c := make(chan int, 2), make(chan int, 2), make(chan int

, 2)
go func() {

for {
x := <-in
a <- x
b <- x
c <- x

}
}()
return a, b, c

}

func fib() <-chan int {
x := make(chan int, 2)
a, b, out := dup3(x)
go func() {

x <- 0
x <- 1
<-a
for {

x <- <-a+<-b



Answers 73

}
}()
return out

}

func main() {
x := fib()
for i := 0; i < 10; i++ {

fmt.Println(<-x)
}

}

// See sdh33b.blogspot.com/2009/12/fibonacci-in-go.html



8 Communication

Good communication is as stimulating as black
coffee, and just as hard to sleep after.

ANNE MORROW LINDBERGH

In this chapter we are going to look at the building blocks in Go for communicating with
the outside world.

Files

Reading from (and writing to) files is easy in Go. This program only uses the os package to
read data from the file /etc/passwd.

Listing 8.1. Reading from a file (unbufferd)

1package main

3import ”os”

5func main() {
6buf := make([]byte, 1024)
7f, _ := os.Open(”/etc/passwd”, os.O_RDONLY, 0666)
8defer f.Close()
9for {
10n, _ := f.Read(buf)
11if n == 0 {
12break
13}
14os.Stdout.Write(buf[0:n])
15}
16}

If you want to use buffered IO there is the bufio package:

Listing 8.2. Reading from a file (bufferd)

1package main

3import (
4”os”
5”bufio”
6)

8func main() {
9buf := make([]byte, 1024)
10f, _ := os.Open(”/etc/passwd”, os.O_RDONLY, 0666)
11defer f.Close()
12r := bufio.NewReader(f)



Command line arguments 75

13w := bufio.NewWriter(os.Stdout)
14defer w.Flush()
15for {
16n, _ := r.Read(buf)
17if n == 0 {
18break
19}
20w.Write(buf[0:n])
21}
22}

On line 12 we create a bufio.Reader from f which is of type *File. NewReader expects
an io.Reader, so you might think this will fail. But it doesn’t. An io.Reader is defined as:

type Reader interface {
Read(p []byte) (n int, err os.Error)

}

So anything that has such a Read() function implements this interface. And from listing
8.1 (line 10) we can see that *File indeed does so.

Command line arguments

Arguments from the command line are available inside your program via the string slice
os.Args, provided you have imported the package os. The flag package has a more sophis-
ticated interface, and also provided a way to parse flags. TODO

example.

Executing commands

The exec package has function to run external commands, and it the premier way to exe-
cute commands from within a Go program. We start commands with the Run function:

func Run(argv0 string, argv, envv []string, dir string, stdin, stdout,
stderr int) (p *Cmd, err os.Error)

Run starts the binary prog runningwith arguments argv and environment envv.
It returns a pointer to a new Cmd representing the command or an error.

Lets execute ls -l:

import ”exec”

cmd, err := exec.Run(”/bin/ls”, []string{”ls”, ”-l”}, nil, ””, exec.
DevNull, exec.DevNull, exec.DevNull)

In the os package we find the ForkExec function. This is another way (but more low level)
to start executables.a The prototype for ForkExec is:

func ForkExec(argv0 string, argv []string, envv []string, dir string, fd
[]*File) (pid int, err Error)

aThere is talk on the go-nuts mailing list about separating Fork and Exec.



76 Chapter 8: Communication

With the following documentation:

ForkExec forks the current process and invokes Exec with the file, arguments,
and environment specified by argv0, argv, and envv. It returns the process id of
the forked process and an Error, if any. The fd array specifies the file descriptors
to be set up in the new process: fd[0] will be Unix file descriptor 0 (standard
input), fd[1] descriptor 1, and so on. A nil entry will cause the child to have
no open file descriptor with that index. If dir is not empty, the child chdirs into
the directory before execing the program.

Suppose we want to execute ls -l again:

import ”os”

pid, err := os.ForkExec(”/bin/ls”, []string{”ls”, ”-l”}, nil, ””, []*os.
File{ os.Stdin, os.Stdout, os.Stderr})

defer os.Wait(pid, os.WNOHANG) ← Otherwise you create a zombie

Exercises

Q22. (8) Processes

1. Write a program that takes a list of all running processes and prints how many
child processes each parent has spawned. The output should look like:

Pid 0 has 2 children: [1 2]
Pid 490 has 2 children: [1199 26524]
Pid 1824 has 1 child: [7293]

• For acquiring the process list, you’ll need to capture the output of ps -e -opid,ppid,comm.
This output looks like:

PID PPID COMMAND
9024 9023 zsh

19560 9024 ps

• If a parent has one child you must print child, is there are more than one
print children;

• The process list must be numerically sorted, so you start with pid 0 andwork
your way up.

Here is a Perl version to help you on your way (or to create complete and utter
confusion).

Listing 8.3. Processes in Perl

#!/usr/bin/perl -l
my (%child, $pid, $parent);
my @ps=‘ps -e -opid,ppid,comm‘; # Capture the ouput from ‘ps‘
foreach (@ps[1..$#ps]) { # Discard the header line

($pid, $parent, undef) = split; # Split the line, discard ’comm’
push @{$child{$parent}}, $pid; # Save the child PIDs on a list

}



Exercises 77

# Walk through the sorted PPIDs
foreach (sort { $a <=> $b } keys %child) {

print ”Pid ”, $_, ” has ”, @{$child{$_}}+0, ” child”, # Print them
@{$child{$_}} == 1 ? ”: ” : ”ren: ”, ”[@{$child{$_}}]”;

}





Answers 79

Answers

A22. (8) Processes

1. There is lots of stuff to do here. We can divide our program up in the following
sections:

1. Starting ps and capturing the output;

2. Parsing the output and saving the child PIDs for each PPID;

3. Sorting the PPID list;

4. Printing the sorted list to the screen

In the solution presented below, we’ve opted to use container/vector to hold the
PIDs. This ”list” grows automatically.
The function atoi (lines 19 through 22) is defined to get ride of the multiple return
values of the original strconv.Atoi, so that it can be used inside function calls that
only accept one argument, as we do on lines 45, 47 and 50.
A possible program is:

Listing 8.4. Processes in Go

1package main

3import (
4”os”
5”fmt”
6”sort”
7”bufio”
8”strings”
9”strconv”
10”container/vector”
11)

13const (
14PID = iota
15PPID
16)

18func atoi(s string) (x int) {
19x, _ = strconv.Atoi(s)
20return
21}

23func main() {
24pr, pw, _ := os.Pipe()
25defer pr.Close()
26r := bufio.NewReader(pr)
27w := bufio.NewWriter(os.Stdout)
28defer w.Flush()
29pid, _ := os.ForkExec(”/bin/ps”, []string{”ps”, ”-e”, ”-opid,

ppid,comm”}, nil, ””, []*os.File{nil, pw, nil})



80 Chapter 8: Communication

30defer os.Wait(pid, os.WNOHANG)
31pw.Close()

33child := make(map[int]*vector.IntVector)
34s, ok := r.ReadString(’\n’) // Discard the header line
35s, ok = r.ReadString(’\n’)
36for ok == nil {
37f := strings.Fields(s)
38if _, present := child[atoi(f[PPID])]; !present {
39v := new(vector.IntVector)
40child[atoi(f[PPID])] = v
41}
42// Save the child PIDs on a vector
43child[atoi(f[PPID])].Push(atoi(f[PID]))
44s, ok = r.ReadString(’\n’)
45}

47// Sort the PPIDs
48schild := make([]int, len(child))
49i := 0
50for k, _ := range child {
51schild[i] = k
52i++
53}
54sort.SortInts(schild)
55// Walk throught the sorted list
56for _, ppid := range schild {
57fmt.Printf(”Pid %d has %d child”, ppid, child[ppid].

Len())
58if child[ppid].Len() == 1 {
59fmt.Printf(”: %v\n”, []int(*child[ppid]))
60} else {
61fmt.Printf(”ren: %v\n”, []int(*child[ppid]))
62}
63}
64}





A Exercises

These exercises need to be put in ”their” chapter. They are included here so the at least
validate as LaTEX.

Exercises

Q23. (3) Minimum and maximum

1. Write a function that calculates the maximum value in an int slice ([]int).

2. Write a function that calculates the minimum value in a int slice ([]int).
Q24. (5) Bubble sort

1. Write a function that performs Bubble sort on slice of ints. From [25]:

It works by repeatedly stepping through the list to be sorted, comparing
each pair of adjacent items and swapping them if they are in the wrong
order. The pass through the list is repeated until no swaps are needed,
which indicates that the list is sorted. The algorithm gets its name from
the way smaller elements ”bubble” to the top of the list.

Q25. (5) Word and letter count

1. Write a small program that reads text from standard input and performs the fol-
lowing actions:

1. Count the number of characters (including spaces);

2. Count the number of words;

3. Count the numbers of lines.

In other words implement wc(1) (check you local manual page), however you only
have to read from standard input.

Q26. (4) Average

1. Write a function that calculates the average of a float slice.

Q27. (9) Number cruncher

• Pick six (6) random numbers from this list:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100

Numbers may be picked multiple times;

• Pick one (1) random number (i) in the range: 1 . . . 1000;

• Tell how, by combining the first 6 numbers (or a subset thereof) with the operators
+,−,∗ and /, you can make i;

An example. We have picked the numbers: 1, 6, 7, 8, 8 and 75. And i is 977. This can be
done in many different ways, one way is:

((((1 ∗ 6) ∗ 8) + 75) ∗ 8)− 7 = 977

or
(8 ∗ (75 + (8 ∗ 6)))− (7/1) = 977



Exercises 83

1. Implement a number cruncher that works like that. Make it print the solution in
a similar format (i.e. output should be infix with parenthesis) as used above.

2. Calculate all possible solutions and show them (or only show howmany there are).
In the example above there are 544 ways to do it.

Q28. (4) Uniq

1. Write a Go program that mimics the function of the Unix uniq command. This
program should work as follows, given a list with the following items:
’a’ ’b’ ’a’ ’a’ ’a’ ’c’ ’d’ ’e’ ’f’ ’g’
it should print only those item which don’t have the same successor:

’a’ ’b’ ’a’ ’c’ ’d’ ’e’ ’f’

Listing A.4 is a Perl implementation of the algorithm.

Listing A.4. uniq(1) in Perl

#!/usr/bin/perl
my @a = qw/a b a a a c d e f g/;
print my $first = shift @a;
foreach (@a) {

if ($first ne $_) { print; $first = $_; }
}





Answers 85

Answers

A23. (3) Minimum and maximum

1. This the function for calculating a maximum:

func max(l []int) (max int) {
max = l[0]
for _, v := range l {

if v > max {
max = v

}
}
return

}

2. This the function for calculating a minimum:

func min(l []int) (min int) {
min = l[0]
for _, v := range l {

if v < min {
min = v

}
}
return

}

A24. (5) Bubble sort

1.

A25. (5) Word and letter count

1. The following program is an implementation of wc(1).

Listing A.1. wc(1) in Go

package main

import (
”os”
”fmt”
”bufio”
”strings”

)

func main() {
var chars, words, lines int
r := bufio.NewReader(os.Stdin)
for {

switch s, ok := r.ReadString(’\n’); true {



86 Appendix A: Exercises

case ok != nil:
fmt.Printf(”%d %d %d\n”, chars, words, lines);
return

default:
chars += len(s)
words += len(strings.Fields(s))
lines++

}
}

}

A26. (4) Average

1. The following function calculates the average.

Listing A.2. Average function in Go

func average(xs []float) (ave float) {
sum := 0.0
switch len(xs) {
case 0:

ave = 0
default:

for _, v := range xs {
sum += v

}
ave = sum / float(len(xs))

}
return

}

func main() {
/* ... */

}

A27. (9) Number cruncher

Listing A.3. Number cruncher

1. package main

import (
”fmt”
”strconv”
”container/vector”
”flag”

)

const (
_ = 1000 * iota
ADD
SUB
MUL
DIV
MAXPOS = 11

)



Answers 87

var mop = map[int]string{
ADD: ”+”,
SUB: ”-”,
MUL: ”*”,
DIV: ”/”,

}

var (
ok bool
value int

)

type Stack struct {
i int
data [MAXPOS]int

}

func (s *Stack) Reset() {
s.i = 0

}

func (s *Stack) Len() int {
return s.i

}

func (s *Stack) Push(k int) {
s.data[s.i] = k
s.i++

}

func (s *Stack) Pop() int {
s.i--
return s.data[s.i]

}

var found int
var stack = new(Stack)

func main() {
flag.Parse()
list := []int{1, 6, 7, 8, 8, 75, ADD, SUB, MUL, DIV}
// list := []int1, 6, 7, ADD, SUB, MUL, DIV
magic, ok := strconv.Atoi(flag.Arg(0))
if ok != nil {

return
}
f := make([]int, MAXPOS)
solve(f, list, 0, magic)

}

func solve(form, numberop []int, index, magic int) {
var tmp int
for i, v := range numberop {

if v == 0 {
goto NEXT

}

if v < ADD {
// it is a number, save it
tmp = numberop[i]
numberop[i] = 0

}
form[index] = v
value, ok = rpncalc(form[0 : index+1])

if ok && value == magic {
if v < ADD {

numberop[i] = tmp // reset and go on
}
found++
fmt.Printf(”%s = %d #%d\n”, rpnstr(form[0:index+1]), value, found)
//goto NEXT

}

if index == MAXPOS-1 {
if v < ADD {

numberop[i] = tmp // reset and go on
}
goto NEXT

}
solve(form, numberop, index+1, magic)
if v < ADD {

numberop[i] = tmp // reset and go on
}



88 Appendix A: Exercises

NEXT:
}

}

// convert rpn to nice infix notation and string
// the r must be valid rpn form
func rpnstr(r []int) (ret string) {

s := new(vector.StringVector)
for k, t := range r {

switch t {
case ADD, SUB, MUL, DIV:

a := s.Pop()
b := s.Pop()
if k == len(r)-1 {

s.Push(b + mop[t] + a)
} else {

s.Push(”(” + b + mop[t] + a + ”)”)
}

default:
s.Push(strconv.Itoa(t))

}
}
for _, v := range *s {

ret += v
}
return

}

// return result from the rpn form.
// if the expression is not valid, ok is false
func rpncalc(r []int) (int, bool) {

stack.Reset()
for _, t := range r {

switch t {
case ADD, SUB, MUL, DIV:

if stack.Len() < 2 {
return 0, false

}
a := stack.Pop()
b := stack.Pop()
if t == ADD {

stack.Push(b + a)
}
if t == SUB {

// disallow negative subresults
if b-a < 0 {

return 0, false
}
stack.Push(b - a)

}
if t == MUL {

stack.Push(b * a)
}
if t == DIV {

if a == 0 {
return 0, false

}
// disallow fractions
if b%a != 0 {

return 0, false
}
stack.Push(b / a)

}
default:

stack.Push(t)
}

}
if stack.Len() == 1 { // there is only one!

return stack.Pop(), true
}
return 0, false

}

2. When starting permrec we give 977 as the first argument:
% ./permrec 977
1+(((6+7)*75)+(8/8)) = 977 #1
... ...
((75+(8*6))*8)-7 = 977 #542
(((75+(8*6))*8)-7)*1 = 977 #543
(((75+(8*6))*8)-7)/1 = 977 #544



Answers 89

A28. (4) Uniq

1. The following is a uniq implementation in Go.

Listing A.5. uniq(1) in Go

package main

import ”fmt”

func main() {
list := []string{”a”, ”b”, ”a”, ”a”, ”c”, ”d”, ”e”, ”f”}

// fmt.Printf(”first := list[0]
fmt.Printf(”%s ”, first)
for _, v := range list[1:] {

if first != v {
fmt.Printf(”%s ”, v)
first = v

}
}

}



B Colophon

This work was created with LaTEX. The main text is set in the Google Droid fonts. All type-
writer text is typeset in DejaVu Mono.

Contributors

The following people have helped tomake this bookwhat it is today. In no particular order:

Miek Gieben <miek@miek.nl>
Main text, exercises and answers;

JC van Winkel
Proof reading, exercises and changes to the main text.

Help with proof reading, checking exercises and text improvements: Mayuresh Kathe,
Sonia Keys,Makoto Inoue, Ben Bullock, Bob Cunningham, and Russel Winder.

Further reading

All text used to create this book are listed in the bibliography, but here follows a more
detailed list of the most interesting ones.

Detailed explanation about defer and the panic and recover mechanism in Go
→ http://blog.golang.org/2010/08/defer-panic-and-recover.html.





C Index

array
capacity, 13
length, 13
multidimensional, 13

buffered, 74
built-in

cap, 7
close, 6
closed, 6
cmplx, 7
copy, 7
imag, 7
len, 7
make, 7, 47
new, 7, 47
panic, 7
panicln, 7
print, 7
println, 7
real, 7

channel, 67
channels, 1, 67
complex numbers, 7
composite literal, 13

deferred list, 25
duck typing, 58

function
as values, 26
call, 50
literal, 25
literals, 26

goroutine, 66
goroutines, 1
gotest, 38

interface, 58
set of methods, 58
type, 58
value, 58

keyword
break, 8, 10

continue, 10
default, 12
defer, 24
else, 8
fallthrough, 11
for, 9
go, 66
goto, 9
if, 8
import, 36
iota, 5
map, 14

add elements, 15
existence, 15
remove elements, 15

package, 34
range, 10, 14

on maps, 11, 14
on slices, 11

return, 8
select, 68
struct, 49
switch, 11
type, 49

method, 20
method call, 50
MixedCaps, 37

named return parameters, 20
nil, 46

operator
address-of, 46
and, 6
bit clear, 6
channel, 67
increment, 47
or, 6
xor, 6

package
bufio, 37, 40, 74
bytes, 36
container/vector, 37
even, 34
exec, 41, 75



Index 93

flag, 40
fmt, 7, 39
http, 40
io, 40
json, 40
lib, 14
os, 40, 75
reflect, 41, 61
ring, 37
sort, 40
strconv, 40
template, 40
unsafe, 40

parallel assignment, 4, 10
pass-by-value, 20
private, 35
public, 35

receiver, 20
reference types, 13
runes, 11, 16

scope
local, 21

slice
capacity, 13
length, 13

type switch, 59, 60

variables
_, 4
assigning, 3
declaring, 3
underscore, 4



D Bibliography

[1] LAMP Group at EPFL. Scala. http://www.scala-lang.org/.

[2] Go Authors. Effective go. http://golang.org/doc/effective_go.html.

[3] Go Authors. Go language specification. http://golang.org/doc/go_spec.html.

[4] Go Authors. Go package documentation. http://golang/doc/pkg/.

[5] Go Authors. Go tutorial. http://golang.org/doc/go_tutorial.html.

[6] Go Authors. Go website. http://golang.org/.

[7] Haskell Authors. Haskell. http://www.haskell.org/.

[8] Perl Package Authors. Comprehensive perl archive network. http://cpan.org/.

[9] Plan 9 Authors. Limbo. http://www.vitanuova.com/inferno/papers/limbo.html.

[10] Plan 9 Authors. Plan 9. http://plan9.bell-labs.com/plan9/index.html.

[11] Mark C. Chu-Carroll. Google’s new language: Go. http://scienceblogs.com/
goodmath/2009/11/googles_new_language_go.php.

[12] Go Community. Go nuts mailing list. http://groups.google.com/group/golang-nuts.

[13] Ericsson Cooperation. Erlang. http://www.erlang.se/.

[14] Brian Kernighan Dennis Ritchie. The c programming language. ...

[15] James Gosling et al. Java. http://oracle.com/java/.

[16] Larray Wall et al. Perl. http://perl.org/.

[17] C. A. R. Hoare. Communicating sequential processes (csp). .....

[18] C. A. R. Hoare. Quicksort. http://en.wikipedia.org/wiki/Quicksort.

[19] Rob Pike. The go programming language, day 2. http://golang.org/doc/
GoCourseDay2.pdf.

[20] Rob Pike. The go programming language, day 3. http://golang.org/doc/
GoCourseDay3.pdf.

[21] Rob Pike. Newsqueak: A language for communicating with mice. http://swtch.com/
~rsc/thread/newsqueak.pdf.

[22] Bjarne Stroustrup. The c++ programming language. ...

[23] Ian Lance Taylor. Go interfaces. http://www.airs.com/blog/archives/277.

[24] Imran On Tech. Using fizzbuzz to find developers
who grok coding. http://imranontech.com/2007/01/24/
using-fizzbuzz-to-find-developers-who-grok-coding/.



Bibliography 95

[25] Wikipedia. Bubble sort. http://en.wikipedia.org/wiki/Bubble_sort.

[26] Wikipedia. Communicating sequential processes. http://en.wikipedia.org/wiki/
Communicating_sequential_processes.

[27] Wikipedia. Duck typing. http://en.wikipedia.org/wiki/Duck_typing.

[28] Wikipedia. Iota. http://en.wikipedia.org/wiki/Iota.



This page is intentionally left blank.


