

Mastering Node

Node is an exciting new platform developed by Ryan Dahl, allowing JavaScript developers to create
extremely high performance servers by leveraging Google's V8 JavaScript engine, and asynchronous I/O. In
Mastering Node we will discover how to write high concurrency web servers, utilizing the CommonJS
module system, node's core libraries, third party modules, high level web development and more.

Mastering Node 1

http://nodejs.org/
http://code.google.com/p/v8/

Installing Node

In this chapter we will be looking at the installation and compilation of node. Although there are several ways
we may install node, we will be looking at homebrew, nDistro, and the most flexible method, of course -
compiling from source.

Homebrew

Homebrew is a package management system for OSX written in Ruby, is extremely well adopted, and easy to
use. To install node via the brew executable simply run:

$ brew install node.js

nDistro

nDistro is a distribution toolkit for node, which allows creation and installation of node distros within
seconds. An nDistro is simply a dotfile named .ndistro which defines module and node binary version
dependencies. In the example below we specify the node binary version 0.1.102, as well as several 3rd party
modules.

node 0.1.102

module senchalabs connect

module visionmedia express 1.0.0beta2

module visionmedia connect-form

module visionmedia connect-redis

module visionmedia jade

module visionmedia ejs

Any machine that can run a shell script can install distributions, and keeps dependencies defined to a single
directory structure, making it easy to maintain an deploy. nDistro uses pre-compiled node binaries making
them extremely fast to install, and module tarballs which are fetched from GitHub via wget or curl (auto
detected).

To get started we first need to install nDistro itself, below we cd to our bin directory of choice, curl the shell
script, and pipe the response to sh which will install nDistro to the current directory:

$ cd /usr/local/bin && curl http://github.com/visionmedia/ndistro/raw/master/install | sh

Next we can place the contents of our example in ./.ndistro, and execute ndistro with no arguments,
prompting the program to load the config, and start installing:

$ ndistro

Installation of the example took less than 17 seconds on my machine, and outputs the following stdout
indicating success. Not bad for an entire stack!

... installing node-0.1.102-i386

... installing connect

... installing express 1.0.0beta2

... installing bin/express

... installing connect-form

... installing connect-redis

... installing jade

... installing bin/jade

... installing ejs

... installation complete

Installing Node 2

http://github.com/mxcl/homebrew
http://github.com/visionmedia/ndistro
http://github.com/visionmedia/ndistro
http://github.com/visionmedia/nodes
http://github.com

Building From Source

To build and install node from source, we first need to obtain the code. The first method of doing so is via
git, if you have git installed you can execute:

$ git clone http://github.com/ry/node.git && cd node

For those without git, or who prefer not to use it, we can also download the source via curl, wget, or similar:

$ curl -# http://nodejs.org/dist/node-v0.1.99.tar.gz > node.tar.gz

$ tar -zxf node.tar.gz

Now that we have the source on our machine, we can run ./configure which discovers which libraries are
available for node to utilize such as OpenSSL for transport security support, C and C++ compilers, etc. make
which builds node, and finally make install which will install node.

$./configure && make && make install

Installing Node 3

CommonJS Module System

CommonJS is a community driven effort to standardize packaging of JavaScript libraries, known as modules.
Modules written which comply to this standard provide portability between other compliant frameworks such
as narwhal, and in some cases even browsers.

Although this is ideal, in practice modules are often not portable due to relying on apis that are currently only
provided by, or are tailored to node specifically. As the framework matures, and additional standards emerge
our modules will become more portable.

Creating Modules

Let's create a utility module named utils, which will contain a merge() function to copy the properties of
one object to another. Typically in a browser, or environment without CommonJS module support, this may
look similar to below, where utils is a global variable.

var utils = {};

 utils.merge = function(obj, other) {};

Although namespacing can lower the chance of collisions, it can still become an issue, and when further
namespacing is applied it can look flat-out silly. CommonJS modules aid in removing this issue by
"wrapping" the contents of a JavaScript file with a closure similar to what is shown below, however more
pseudo globals are available to the module in addition to exports, require, and module. The exports
object is then returned when a user invokes require('utils').

var module = { exports: {}};

 (function(module, exports){

 function merge(){};

 exports.merge = merge;

 })(module, module.exports);

First create the file ./utils.js, and define the merge() function as seen below. The implied anonymous
wrapper function shown above allows us to seemingly define globals, however these are not accessible until
exported.

 function merge(obj, other) {

 var keys = Object.keys(other);

 for (var i = 0, len = keys.length; i < len; ++i) {

 var key = keys[i];

 obj[key] = other[key];

 }

 return obj;

 };

 exports.merge = merge;

The typical pattern for public properties is to simply define them on the exports object like so:

exports.merge = function(obj, other) {

 var keys = Object.keys(other);

 for (var i = 0, len = keys.length; i < len; ++i) {

 var key = keys[i];

 obj[key] = other[key];

 }

 return obj;

};

CommonJS Module System 4

http://commonjs.org

Next we will look at utilizing out new module in other libraries.

Requiring Modules

To get started with requiring modules, first create a second file named ./app.js with the code shown below.
The first line require('./utils') fetches the contents of ./utils.js and returns the exports of which
we later utilize our merge() method and display the results of our merged object using console.dir().

var utils = require('./utils');

var a = { one: 1 };

var b = { two: 2 };

utils.merge(a, b);

console.dir(a);

Core modules such as the sys which are bundled with node can be required without a path, such as
require('sys'), however 3rd-party modules will iterate the require.paths array in search of a
module matching the given path. By default require.paths includes ~/.node_libraries, so if
~/.node_libraries/utils.js_ exists we may simply require('utils'), instead of our relative example
require('./utils') shown above.

Node also supports the concept of index JavaScript files. To illustrate this example lets create a math module
that will provide the math.add(), and math.sub() methods. For organizational purposes we will keep
each method in their respective ./math/add.js and ./math/sub.js files. So where does index.js come into play?
we can populate ./math/index.js with the code shown below, which is used when require('./math') is
invoked, which is conceptually identical to invoking require('./math/index').

module.exports = {

 add: require('./add'),

 sub: require('./sub')

};

The contents of ./math/add.js show us a new technique, here we use module.exports instead of
exports. Previously mentioned was the fact that exports is not the only object exposed to the module file
when evaluated, we also have access to __dirname, __filename, and module which represents the
current module. Here we simply define the module export object to a new object, which happens to be a
function.

module.exports = function add(a, b){

 return a + b;

};

This technique is usually only helpful when your module has one aspect that it wishes to expose, be it a single
function, constructor, string, etc. Below is an example of how we could provide the Animal constructor:

exports.Animal = function Animal(){};

which can then be utilized as shown:

var Animal = require('./animal').Animal;

if we change our module slightly, we can remove .Animal:

module.exports = function Animal(){};

which can now be used without the property:

CommonJS Module System 5

var Animal = require('./animal');

Require Paths

We talked about require.paths, the Array utilized by node's module system in order to discover
modules. By default node checks the following directories for modules:

<node binary>/../../lib/node•

$HOME/.node_libraries•

$NODE_PATH•

The NODE_PATH environment variable is much like PATH, as it allows several paths delimited by the
colon (:) character.

Runtime Manipulation

Since require.paths is just an array, we can manipulate it at runtime in order to expose libraries. In our
previous example we defined the libraries ./math/{add,sub}.js, in which we would typically
require('./math') or require('./math/add') etc. Another approach is to prepend or "unshift"
a directory onto require.paths as shown below, after which we can simply require('add') since
node will iterate the paths in order to try and locate the module.

require.paths.unshift(__dirname + '/math');

var add = require('add'),

 sub = require('sub');

console.log(add(1,2));

console.log(sub(1,2));

Pseudo Globals

As mentioned above, modules have several pseudo globals available to them, these are as follows:

require the require function itself•

module the current Module instance•

exports the current module's exported properties•

__filename absolute path to the current module's file•

__dirname absolute path to the current module's directory•

require()

Although not obvious at first glance, the require() function is actually re-defined for the current module,
and calls an internal function loadModule with a reference to the current Module to resolve relative paths
and to populate module.parent.

module

When we require() a module, typically we only deal with the module's exports, however the module
variable references the current module's Module instance. This is why the following is valid, as we may
re-assign the module's exports to any object, even something trivial like a string:

// css.js

module.exports = 'body { background: blue; }';

CommonJS Module System 6

To obtain this string we would simply require('./css'). The module object also contains these useful
properties:

id the module's id, consisting of a path. Ex: ./app•

parent the parent Module (which required this one) or undefined•

filename absolute path to the module•

moduleCache an object containing references to all cached modules•

Registering Module Compilers

Another cool feature that node provides us is the ability to register compilers for a specific file extension. A
good example of this is the CoffeeScript language, which is a ruby/python inspired language compiling to
vanilla JavaScript. By using require.registerExtension() we can have node compile CoffeeScript
to JavaScript in an automated fashion.

To illustrate its usage, let's create a small (and useless) Extended JavaScript language, or "ejs" for our
example which will live at ./compiler/example.ejs, its syntax will look like this:

::min(a, b) a < b ? a : b

::max(a, b) a > b ? a : b

which will be compiled to:

exports.min = function min(a, b) { return a < b ? a : b }

exports.max = function max(a, b) { return a > b ? a : b }

First let's create the module that will actually be doing the ejs to JavaScript compilation. In this example it is
located at ./compiler/extended.js, and exports a single method named compile(). This method accepts a
string, which is the raw contents of what node is requiring, transformed to vanilla JavaScript via regular
expressions.

exports.compile = function(str){

 return str

 .replace(/(\w+)\(/g, '$1 = function $1(')

 .replace(/\)(.+?)\n/g, '){ return $1 }\n')

 .replace(/::/g, 'exports.');

};

Next we have to "register" the extension to assign out compiler. As previously mentioned our compiler lives
at ./compiler/extended.js so we are requiring it in, and passing the compile() method to
require.registerExtension() which simply expects a function accepting a string, and returning a
string of JavaScript.

require.registerExtension('.ejs', require('./compiler/extended').compile);

Now when we require our example, the ".ejs" extension is detected, and will pass the contents through our
compiler, and everything works as expected.

var example = require('./compiler/example');

console.dir(example)

console.log(example.min(2, 3));

console.log(example.max(10, 8));

// => { min: [Function], max: [Function] }

// => 2

// => 10

CommonJS Module System 7

Globals

As we have learnt node's module system discourages the use of globals, however node provides a few
important globals for use to utilize. The first and most important is the process global which exposes
process manipulation such as signalling, exiting, the process id (pid), and more. Other globals help drive to be
similar to other familiar JavaScript environments such as the browser, by providing a console object.

console

The console object contains several methods which are used to output information to stdout or stderr. Let's
take a look at what each method does.

console.log()

The most frequently used console method is console.log() simply writing to stdout with a line feed
(\n). Currently aliased as console.info().

console.log('wahoo');

// => wahoo

console.log({ foo: 'bar' });

// => [object Object]

console.error()

Identical to console.log(), however writes to stderr. Aliased as console.warn() as well.

console.error('database connection failed');

console.dir()

Utilizes the sys module's inspect() method to pretty-print the object to stdout.

console.dir({ foo: 'bar' });

// => { foo: 'bar' }

console.assert()

Asserts that the given expression is truthy, or throws an exception.

console.assert(connected, 'Database connection failed');

process

The process object is plastered with goodies, first we will take a look at some properties that provide
information about the node process itself.

process.version

The version property contains the node version string, for example "v0.1.103".

Globals 8

process.installPrefix

Exposes the installation prefix, in my case "/usr/local", as node's binary was installed to "/usr/local/bin/node".

process.execPath

Path to the executable itself "/usr/local/bin/node".

process.platform

Exposes a string indicating the platform you are running on, for example "darwin".

process.pid

The process id.

process.cwd()

Returns the current working directory, for example:

cd ~ && node

node> process.cwd()

"/Users/tj"

process.chdir()

Changes the current working directory to the path passed.

process.chdir('/foo');

process.getuid()

Returns the numerical user id of the running process.

process.setuid()

Sets the effective user id for the running process. This method accepts both a numerical id, as well as a string.
For example both process.setuid(501), and process.setuid('tj') are valid.

process.getgid()

Returns the numerical group id of the running process.

process.setgid()

Similar to process.setuid() however operates on the group, also accepting a numerical value or string
representation. For example process.setgid(20) or process.setgid('www').

process.env

An object containing the user's environment variables, for example:

{ PATH: '/Users/tj/.gem/ruby/1.8/bin:/Users/tj/.nvm/current/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin'

Globals 9

, PWD: '/Users/tj/ebooks/masteringnode'

, EDITOR: 'mate'

, LANG: 'en_CA.UTF-8'

, SHLVL: '1'

, HOME: '/Users/tj'

, LOGNAME: 'tj'

, DISPLAY: '/tmp/launch-YCkT03/org.x:0'

, _: '/usr/local/bin/node'

, OLDPWD: '/Users/tj'

}

process.argv

When executing a file with the node executable process.argv provides access to the argument vector,
the first value being the node executable, second being the filename, and remaining values being the
arguments passed.

For example our source file ./src/process/misc.js can be executed by running:

$ node src/process/misc.js foo bar baz

in which we call console.dir(process.argv), outputting the following:

['node'

, '/Users/tj/EBooks/masteringnode/src/process/misc.js'

, 'foo'

, 'bar'

, 'baz'

]

process.exit()

The process.exit() method is synonymous with the C function exit(), in which a exit code > 0 is
passed indicating failure, or 0 to indicate success. When invoked the exit event is emitted, allowing a short
time for arbitrary processing to occur before process.reallyExit() is called with the given status
code.

process.on()

The process itself is an EventEmitter, allowing you to do things like listen for uncaught exceptions, via
the uncaughtException event:

process.on('uncaughtException', function(err){

 console.log('got an error: %s', err.message);

 process.exit(1);

});

setTimeout(function(){

 throw new Error('fail');

}, 100);

process.kill()

process.kill() method sends the signal passed to the given pid, defaulting to SIGINT. In our example
below we send the SIGTERM signal to the same node process to illustrate signal trapping, after which we
output "terminating" and exit. Note that our second timeout of 1000 milliseconds is never reached.

process.on('SIGTERM', function(){

Globals 10

 console.log('terminating');

 process.exit(1);

});

setTimeout(function(){

 console.log('sending SIGTERM to process %d', process.pid);

 process.kill(process.pid, 'SIGTERM');

}, 500);

setTimeout(function(){

 console.log('never called');

}, 1000);

errno

The process object is host of the error numbers, these reference what you would find in C-land, for
example process.EPERM represents a permission based error, while process.ENOENT represents a
missing file or directory. Typically these are used within bindings to bridge the gap between C++ and
JavaScript, however useful for handling exceptions as well:

if (err.errno === process.ENOENT) {

 // Display a 404 "Not Found" page

} else {

 // Display a 500 "Internal Server Error" page

}

Globals 11

Events

The concept of an "event" is crucial to node, and used greatly throughout core and 3rd-party modules. Node's
core module events supplies us with a single constructor, EventEmitter.

Emitting Events

Typically an object inherits from EventEmitter, however our small example below illustrates the api. First we
create an emitter, after which we can define any number of callbacks using the emitter.on() method
which accepts the name of the event, and arbitrary objects passed as data. When emitter.emit() is called
we are only required to pass the event name, followed by any number of arguments, in this case the first
and last name strings.

var EventEmitter = require('events').EventEmitter;

var emitter = new EventEmitter;

emitter.on('name', function(first, last){

 console.log(first + ', ' + last);

});

emitter.emit('name', 'tj', 'holowaychuk');

emitter.emit('name', 'simon', 'holowaychuk');

Inheriting From EventEmitter

A perhaps more practical use of EventEmitter, and commonly used throughout node is to inherit from it.
This means we can leave EventEmitter's prototype untouched, while utilizing its api for our own means
of world domination!

To do so we begin by defining the Dog constructor, which of course will bark from time to time, also known
as an event.

var EventEmitter = require('events').EventEmitter;

function Dog(name) {

 this.name = name;

}

Here we inherit from EventEmitter, so that we may use the methods provided such as
EventEmitter#on() and EventEmitter#emit(). If the __proto__ property is throwing you off,
no worries! we will be touching on this later.

Dog.prototype.__proto__ = EventEmitter.prototype;

Now that we have our Dog set up, we can create simon! When simon barks we can let stdout know by
calling console.log() within the callback. The callback it-self is called in context to the object, aka
this.

var simon = new Dog('simon');

simon.on('bark', function(){

 console.log(this.name + ' barked');

});

Events 12

Bark twice a second:

setInterval(function(){

 simon.emit('bark');

}, 500);

Removing Event Listeners

As we have seen event listeners are simply functions which are called when we emit() an event. Although
not seen often we can remove these listeners by calling the removeListener(type, callback)
method. In the example below we emit the message "foo bar" every 300 milliseconds, which has the callback
of console.log(). After 1000 milliseconds we call removeListener() with the same arguments that
we passed to on() originally. To compliment this method is removeAllListeners(type) which
removes all listeners associated to the given type.

var EventEmitter = require('events').EventEmitter;

var emitter = new EventEmitter;

emitter.on('message', console.log);

setInterval(function(){

 emitter.emit('message', 'foo bar');

}, 300);

setTimeout(function(){

 emitter.removeListener('message', console.log);

}, 1000);

Events 13

Buffers

To handle binary data, node provides us with the global Buffer object. Buffer instances represent memory
allocated independently to that of V8's heap. There are several ways to construct a Buffer instance, and
many ways you can manipulate it's data.

The simplest way to construct a Buffer from a string is to simply pass a string as the first argument. As you
can see by the log output, we now have a buffer object containing 5 bytes of data represented in hexadecimal.

var hello = new Buffer('Hello');

console.log(hello);

// => <Buffer 48 65 6c 6c 6f>

console.log(hello.toString());

// => "Hello"

By default the encoding is "utf8", however this can be specified by passing as string as the second argument.
The ellipsis below for example will be printed to stdout as the '&' character when in "ascii" encoding.

var buf = new Buffer('â�¦');

console.log(buf.toString());

// => â�¦

var buf = new Buffer('â�¦', 'ascii');

console.log(buf.toString());

// => &

An alternative method is to pass an array of integers representing the octet stream, however in this case
functionality equivalent.

var hello = new Buffer([0x48, 0x65, 0x6c, 0x6c, 0x6f]);

Buffers can also be created with an integer representing the number of bytes allocated, after which we may
call the write() method, providing an optional offset and encoding. As shown below we provide the offset
of 2 bytes to our second call to write(), buffering "Hel", and then we continue on to write another two
bytes with an offset of 3, completing "Hello".

var buf = new Buffer(5);

buf.write('He');

buf.write('l', 2);

buf.write('lo', 3);

console.log(buf.toString());

// => "Hello"

The .length property of a buffer instance contains the byte length of the stream, opposed to JavaScript
strings which will simply return the number of characters. For example the ellipsis character 'â�¦' consists of
three bytes, however the buffer will respond with the byte length, and not the character length.

var ellipsis = new Buffer('â�¦', 'utf8');

console.log('â�¦ string length: %d', 'â�¦'.length);

// => â�¦ string length: 1

console.log('â�¦ byte length: %d', ellipsis.length);

// => â�¦ byte length: 3

console.log(ellipsis);

Buffers 14

// => <Buffer e2 80 a6>

When dealing with JavaScript strings, we may pass it to the Buffer.byteLength() method to determine
it's byte length.

The api is written in such a way that it is String-like, so for example we can work with "slices" of a Buffer
by passing offsets to the slice() method:

var chunk = buf.slice(4, 9);

console.log(chunk.toString());

// => "some"

Alternatively when expecting a string we can pass offsets to Buffer#toString():

var buf = new Buffer('just some data');

console.log(buf.toString('ascii', 4, 9));

// => "some"

Buffers 15

Streams

Streams are an important concept in node. The stream api is a unified way to handle stream-like data, for
example data can be streamed to a file, streamed to a socket to respond to an HTTP request, or a stream can
be read-only such as reading from stdin. However since we will be touching on stream specifics in later
chapters, for now we will concentrate on the api.

Readable Streams

Readable streams such as an HTTP request inherit from EventEmitter in order to expose incoming data
through events. The first of these events is the data event, which is an arbitrary chunk of data passed to the
event handler as a Buffer instance.

req.on('data', function(buf){

 // Do something with the Buffer

});

As we know, we can call toString() a buffer to return a string representation of the binary data, however
in the case of streams if desired we may call setEncoding() on the stream, after which the data event will
emit strings.

req.setEncoding('utf8');

req.on('data', function(str){

 // Do something with the String

});

Another import event is the end event, which represents the ending of data events. For example below we
define an HTTP echo server, simply "pumping" the request body data through to the response. So if we POST
"hello world", our response will be "hello world".

var http = require('http');

http.createServer(function(req, res){

 res.writeHead(200);

 req.on('data', function(data){

 res.write(data);

 });

 req.on('end', function(){

 res.end();

 });

}).listen(3000);

The sys module actually has a function designed specifically for this "pumping" action, aptly named
sys.pump(), which accepts a read stream as the first argument, and write stream as the second.

var http = require('http'),

 sys = require('sys');

http.createServer(function(req, res){

 res.writeHead(200);

 sys.pump(req, res);

}).listen(3000);

Streams 16

File System

To work with the filesystem, node provides the 'fs' module. The commands follow the POSIX operations,
with most methods supporting an asynchronous and synchronous method call. We will look at how to use
both and then establish which is the better option.

Working with the filesystem

Lets start with a basic example of working with the filesystem, this example creates a directory, it then creates
a file in it. Once the file has been created the contents of the file are written to console:

var fs = require('fs');

fs.mkdir('./helloDir',0777, function (err) {

 if (err) throw err;

 fs.writeFile('./helloDir/message.txt', 'Hello Node', function (err) {

 if (err) throw err;

 console.log('file created with contents:');

 fs.readFile('./helloDir/message.txt','UTF-8' ,function (err, data) {

 if (err) throw err;

 console.log(data);

 });

 });

});

As evident in the example above, each callback is placed in the previous callback - this is what is referred to
as chainable callbacks. When using asynchronous methods this pattern should be used, as there is no
guarantee that the operations will be completed in the order that they are created. This could lead to
unpredictable behavior.

The example can be rewritten to use a synchronous approach:

fs.mkdirSync('./helloDirSync',0777);

fs.writeFileSync('./helloDirSync/message.txt', 'Hello Node');

var data = fs.readFileSync('./helloDirSync/message.txt','UTF-8');

console.log('file created with contents:');

console.log(data);

It is better to use the asynchronous approach on servers with a high load, as the synchronous methods will
cause the whole process to halt and wait for the operation to complete. This will block any incoming
connections and other events.

File information

The fs.Stats object contains information about a particular file or directory. This can be used to determine
what type of object we are working with. In this example we are getting all the file objects in a directory and
displaying whether they are a file or a directory object.

var fs = require('fs');

fs.readdir('/etc/', function (err, files) {

 if (err) throw err;

 files.forEach(function (file) {

File System 17

 fs.stat('/etc/' + file, function (err, stats) {

 if (err) throw err;

 if (stats.isFile()) {

 console.log("%s is file", file);

 }

 else if (stats.isDirectory ()) {

 console.log("%s is a directory", file);

 }

 console.log('stats: %s',JSON.stringify(stats));

 });

 });

});

Watching files

The fs.watchfile monitors a file and will fire the event whenever the file is changed.

var fs = require('fs');

fs.watchFile('./testFile.txt', function (curr, prev) {

 console.log('the current mtime is: ' + curr.mtime);

 console.log('the previous mtime was: ' + prev.mtime);

});

fs.writeFile('./testFile.txt', "changed", function (err) {

 if (err) throw err;

 console.log("file write complete");

});

A file can also be unwatched using the fs.unwatchFile method call. This is used once monitoring of a file is no
longer required.

Nodejs Docs for further reading

The node api docs are very detailed and list all the possible filesystem commands available when working
with Nodejs.

File System 18

http://nodejs.org/api.html#file-system-106

TCP

...

TCP Servers

...

TCP Clients

...

TCP 19

HTTP

...

HTTP Servers

...

HTTP Clients

...

HTTP 20

Connect

Connect is a ...

Connect 21

Express

Express is a ...

Express 22

Testing

...

Expresso

...

Vows

...

Testing 23

Deployment

...

Deployment 24

	index.html
	installation.html
	modules.html
	globals.html
	events.html
	buffers.html
	streams.html
	fs.html
	tcp.html
	http.html
	connect.html
	express.html
	testing.html
	deploy.html

