
Fedora Security Team

Secure Ruby
Development Guide
Guide to secure software development in Ruby

Ján Rusnačko

Secure Ruby Development Guide

Fedora Security Team Secure Ruby Development Guide
Guide to secure software development in Ruby
Edition 1

Author Ján Rusnačko jrusnack@redhat.com

Copyright © 2014 Ján Rusnačko.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat,
designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with
CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the
original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

For guidelines on the permitted uses of the Fedora trademarks, refer to https://fedoraproject.org/wiki/
Legal:Trademark_guidelines.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

This guide covers security aspects of software development in Ruby.

mailto:jrusnack@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/
https://fedoraproject.org/wiki/Legal:Trademark_guidelines
https://fedoraproject.org/wiki/Legal:Trademark_guidelines

iii

1. Environment 1
1.1. Code quality metrics ... 1
1.2. Dependency management .. 1

1.2.1. Outdated Dependencies ... 1
1.2.2. Vendoring dependencies .. 2
1.2.3. Gem signing .. 2

1.3. Static code analysis with Brakeman .. 5
1.3.1. Continuous integration ... 6
1.3.2. Reducing number of false warnings .. 6

2. Language features 9
2.1. Tainting and restricted code execution ... 9

2.1.1. Object.tainted? .. 9
2.1.2. Object.untrusted? .. 9
2.1.3. $SAFE .. 10

2.2. Dangerous methods ... 11
2.3. Symbols ... 12
2.4. Serialization in Ruby ... 12

2.4.1. Marshal.load .. 12
2.4.2. YAML.load ... 13
2.4.3. JSON.parse and JSON.load ... 13
2.4.4. Exploiting deserialization vulnerabilities ... 14

2.5. Regular expressions ... 16
2.6. Object.send .. 16
2.7. SSL in Ruby .. 16

2.7.1. Certificate store ... 17
2.7.2. Ruby libraries using OpenSSL .. 18

3. Web Application Security 21
3.1. Authentication and session management ... 21
3.2. Authorization and user management ... 21
3.3. Common attacks and mitigations ... 21

3.3.1. Cross site scripting (XSS) .. 21
3.3.2. Cross site request forgery (CSRF) .. 21
3.3.3. Command injection .. 24
3.3.4. Cross site tracing (XST) ... 27
3.3.5. Guidelines and principles ... 27

3.4. Client-side security ... 27
3.4.1. Same origin policy ... 27
3.4.2. Bypassing same origin policy ... 29
3.4.3. Content Security Policy (CSP) .. 32
3.4.4. HTTP Strict Transport Security ... 35
3.4.5. X-XSS-Protection ... 36
3.4.6. X-Frame-Options ... 37
3.4.7. X-Content-Type-Options ... 37
3.4.8. Configuring Rails ... 38
3.4.9. Guidelines and recommendations ... 38

3.5. Application and server configuration and hardening .. 39
3.5.1. Logging ... 39
3.5.2. User content storage ... 39
3.5.3. Storing passwords securely .. 39

A. Revision History 41

Index 43

iv

Chapter 1.

1

Environment
Development environment can significantly affect quality and security of code and investing certain
effort into proper setup can result in saved development time, better code coverage, more readable
and secure code etc. In general, automated checks provide a good baseline and are less prone to
unintentional mistakes than developers.

1.1. Code quality metrics
Security is just one aspect of code quality along with reliability, correctness and others. These metrics
overlap a lot, for example denial of service can be seen as both security and reliability issue. Therefore
improvement in any of these areas is likely to affect others.

Increasing code quality by reducing complexity, duplication of code and mainaining good readability
is a good first step towards security. All other things being equal, more complex code will have more
weaknesses than simpler one.

Several gems can help with improving code quality:

• Rails Best Practices1 is a popular gem among rails developers and new checks are implemented
based on voting of community.

• rubocop2 is a style checker and implements vast amount of checks based on Ruby Style Guide3

• metric_fu4 combines several popular code metric tools like Reek5, Flog6, Flay7, Cane8 etc.

These are just few examples and actual setup may vary from project to project. However, they help
developers keep code complexity low in an automated fashion and can be easily integrated into
workflow.

1.2. Dependency management
Dependencies in form of gems can be another source of vulnerabilities in Ruby applications.

1.2.1. Outdated Dependencies
Bundler9 is the de facto standard for managing Ruby application dependencies. Developer can specify
required dependencies and their versions in Gemfile and bundler automatically resolves dependencies
and prepares environment for application to run in. Bundler freezes exact versions of dependencies
in Gemfile.lock and everytime this file is present, depencency resolution step is skipped and exact
versions of gems from Gemfile.lock are installed.

Freezing versions of dependencies has a security impact. If a dependency is vulnerable and
new version contains the fix, Gemfile.lock has to be updated. Detection of outdated versions of

1 https://github.com/railsbp/rails_best_practices
2 https://github.com/bbatsov/rubocop
3 https://github.com/bbatsov/ruby-style-guide
4 https://github.com/metricfu/metric_fu
5 https://github.com/troessner/reek
6 https://github.com/seattlerb/flog
7 https://github.com/seattlerb/flay
8 https://github.com/square/cane
9 http://bundler.io/

https://github.com/railsbp/rails_best_practices
https://github.com/bbatsov/rubocop
https://github.com/bbatsov/ruby-style-guide
https://github.com/metricfu/metric_fu
https://github.com/troessner/reek
https://github.com/seattlerb/flog
https://github.com/seattlerb/flay
https://github.com/square/cane
http://bundler.io/
https://github.com/railsbp/rails_best_practices
https://github.com/bbatsov/rubocop
https://github.com/bbatsov/ruby-style-guide
https://github.com/metricfu/metric_fu
https://github.com/troessner/reek
https://github.com/seattlerb/flog
https://github.com/seattlerb/flay
https://github.com/square/cane
http://bundler.io/

Chapter 1. Environment

2

dependencies is something that can be automated and several gems help with this using information
provided by rubysec-db10.

Rubysec11 project maintains rubysec-db database of all security advisories related to Ruby libraries.
This database covers most of the popular gems and provides data to identify vulnerable and patched
versions of dependencies.

bundler-audit12 is a gem maintainted by rubysec project that automatically scans Gemfile.lock and
reports any unpatched dependencies or insecure sources.

gemsurance13 also works on top of rubysec-db. Unlike bundler-audit it outputs html report and lists
outdated gems as well. Another useful feature is possibility to integrate the check with RSpec and
make your tests fail whenever vulnerable dependency is detected.

Other gems or services that provide similar functionality include HolePicker14 and gemcanary15.

Important

It is highly recommended to set up automated checks for outdated dependencies.

1.2.2. Vendoring dependencies
Another way of freezing dependencies is checking their source code into vendor folder in application.
With bundler this practice becomes obsolete. Another, still valid, usecase is when dependency needs
to be slightly modified to suit needs of application.

By checking the dependency into the application`s repository, developer takes responsibility of
tracking bugs and vulnerabilities and updating vendored gems. However, backporting commits that fix
security issues from upstream version will render automatic tools for checking dependencies useless,
as they will rely on gem versions, which will not correspond with the vendored code.

1.2.3. Gem signing
Gem signing is already implemented in rubygems and is based on x509 certificates, even though
discussion about future implementation is ongoing16. There is no PKI, so user who wants to
verify gem`s integrity must explicitly download and trust certificate that was used to sign the gem.
Establishing trust in certificate of party user has no prior relationship with over internet can be diffucult
and unscalable.

10 https://github.com/rubysec/ruby-advisory-db/
11 http://www.rubysec.com
12 https://github.com/rubysec/bundler-audit
13 https://github.com/appfolio/gemsurance
14 https://github.com/jsuder/holepicker
15 https://gemcanary.com/
16 https://github.com/rubygems-trust/rubygems.org/wiki

https://github.com/rubysec/ruby-advisory-db/
http://www.rubysec.com
https://github.com/rubysec/bundler-audit
https://github.com/appfolio/gemsurance
https://github.com/jsuder/holepicker
https://gemcanary.com/
https://github.com/rubygems-trust/rubygems.org/wiki
https://github.com/rubysec/ruby-advisory-db/
http://www.rubysec.com
https://github.com/rubysec/bundler-audit
https://github.com/appfolio/gemsurance
https://github.com/jsuder/holepicker
https://gemcanary.com/
https://github.com/rubygems-trust/rubygems.org/wiki

Gem signing

3

Important

Assuming user verified the certificate belongs to the developer it says, signature protects integrity
of gem as it is distributed and gives user a mechanism to detect modifications of gem after it was
signed.

However, signatures do not guarantee trustworthiness of gem author.

Developer can generate his private key and self signed certificate with:

$ gem cert --build <email address>
...
$ chmod 600 gem-private_key.pem gem-public_cert.pem

This command will generate self-signed 2048 bit RSA with SHA1 certificate (this configuration is
currently hardcoded) stored in PEM format.

Important

Generated private key will not be passphrase protected, and it has to be encrypted manually:

$ openssl rsa -des3 -in <private key> -out <encrypted private key>

To sign the gem, following needs to be added to gemspec:

s.cert_chain = <path to public certificate>
s.signing_key = <path to private key> if $0 =~ /gem\z/

After building the gem, one can verify it has been signed with:

$ gem spec testgem-1.0.0.gem cert_chain
...
$ tar tf testgem-1.0.0.gem
data.tar.gz
metadata.gz
data.tar.gz.sig
metadata.gz.sig

1.2.3.1. Installation and policies
To make use of signatures in gems, user has to specify security policy during gem installation (it is
turned off by default):

Chapter 1. Environment

4

$ gem install -P HighSecurity testgem

There are 4 available security policies:
No policy

Signed packages are treated as unsigned.

LowSecurity
Still pretty much no security. Rubygems will make sure signature matches certificate and
certificate hasn`t expired.

MediumSecurity
For signed gems, signature is verified against certificate, certificate validity is checked and
certificate chain is checked too. Packages from untrusted sources won`t be installed (user has to
explicitly trust the cerficate, see below). Unsigned gems are installed normally.

HighSecurity
Same as medium, but unsigned gems are not installed.

Warning

Since signatures protect integrity of gem as it`s being distributed from developer to users, the
only policy with security impact is HighSecurity. With MediumSecurity, attacker can always
intercept gem, strip signatures, modify it and serve users that accept unsigned gems.

To install signed gem under medium or high security policy, user has to download certificate from
external source, verify it`s authenticity and explicitly add it to his local database of trusted certificates:

$ gem cert --add <certificate>

This command will store public certificate to ~/.gem/trust directory. Name of the certificate will
contain hexdigest of the subject of certificate, so if users adds another certificate with the same subject
as one of the already trusted ones, original one will be overwritten without notice.

To avoid overwriting existing certificate, make sure subject of certificate being added is different from
certificates that are already trusted:

$ openssl x509 -text -in <certificate> | grep Subject:
 Subject: CN=test, DC=example, DC=com
$ gem cert --list
...

Bundler supports gem signing and trust policies since version 1.3 and user can specify security policy
during installation:

$ bundle install --trust-policy=HighSecurity

Static code analysis with Brakeman

5

Warning

Gems that are installed by bundler from repository like

gem 'jquery-datatables-rails', git: 'git://github.com/rweng/jquery-datatables-rails.git'

bypass security policy, as they are not installed using gem command, but cloned into bundler
folder.

A small gem bundler_signature_check can be used to check Gemfile and determine which
gems are signed, with suggestion which security policy can be currently safely used (note that
bundler_signature_check is signed and it`s dependencies bundler and rake are likely already
installed, so HighSecurity can be used):

$ gem install -P HighSecurity bundler_signature_check
$ bundler_signature_check
...

1.2.3.2. References:
• Rubygems Security page http://guides.rubygems.org/security/

• Documentation of Gem::Security module http://rubygems.rubyforge.org/rubygems-update/Gem/
Security.html

• Ben Smith`s Hacking with gems presentation http://www.youtube.com/watch?v=z-5bO0Q1J9s

1.3. Static code analysis with Brakeman
Brakeman17 is a static code scanner for Ruby on Rails applications. It does not require any
configuration and can be run out-of-the-box on source of rails application. It performs static code
analysis, so it does not require rails application to be set up, but rather parses the source code and
looks for common vulnerable patterns.

Brakeman gem is signed, but some of its dependencies are not, so to install run:

$ gem install -P MediumSecurity brakeman

To execute scan on application, run brakeman from rails application repository:

$ brakeman -o report.html --path <path to rails app>

The format of the output is determined by file extension or by -f flag. Currently supported formats are
html,json,tabs, csv and text.

17 http://brakemanscanner.org

http://guides.rubygems.org/security/
http://rubygems.rubyforge.org/rubygems-update/Gem/Security.html
http://rubygems.rubyforge.org/rubygems-update/Gem/Security.html
http://www.youtube.com/watch?v=z-5bO0Q1J9s
http://brakemanscanner.org
http://brakemanscanner.org

Chapter 1. Environment

6

Brakeman output contains warnings in format

+------------+-----------+---------+--------------------
+--+
| Confidence | Class | Method | Warning Type | Message
 |
+------------+-----------+---------+--------------------
+--+
| High | Foo | bar | Denial of Service | Symbol conversion from unsafe
 String ... |

As static code scanner Brakeman does not analyze the behaviour of code when run and lacks
execution context (e.g. it does not know about dead code that`s never executed). Therefore Brakeman
output usually contains also false warnings. There are 3 confidence levels to help developers
determine possible false warnings and prioritize when reviewing the output: High, Medium and Weak.

1.3.1. Continuous integration
Good way to use Brakeman is to integrate it into workflow of a project and fix the reported problems
before they are committed into repository.

Creating a rake task is easy with

$ brakeman --rake

which creates file lib/tasks/brakeman.rake

Another useful options is to create a configuration file from a command line options:

$ brakeman -C <config file> <options>

which can be later used:

$ brakeman -c <config file>

Very useful feature is comparison with older scan result and outputting only difference between reports
- developers can then easily identify warnings that were just added or fixed:

$ brakeman --compare <old result in json> -o <output in json>

The output is always in json (-f is ignored).

1.3.2. Reducing number of false warnings
There are several ways to reduce number of false warnings, most of which can be dangerous.
Reducing number of false warnings might be meaningful when Brakeman is adopted by an existing
project - in such cases initial report can be overwhelming and ignoring warnings that are likely to be
false can be crucial. However, this shall be considered only temporary solution.

Reducing number of false warnings

7

Important

Reduction of false warnings by skipping certain checks or ignoring certain files is dangerous.
Even if all currently reported warnings are false, future commits might introduce flaws that would
otherwise be reported. This greatly reduces effectiveness of Brakeman and its value for project.

One way to reduce number of warnings is to set minimum confidence level:

$ brakeman -w <level>

where level 1 indicates Weak confidence, level 2 Medium and 3 High confidence.

Another option is to specify list of safe methods:

$ brakeman -s <comma separated list of methods>

This will add methods to the set of known safe methods and certain checks will skip them without
producing a warning. For example, Cross site scripting checker maintains a set of methods which
produce safe output (it contains methods like escapeHTML) and safe methods specified as command
line argument are added to the list.

You can skip processing lib directory and/or specify files to be skipped:

$ brakeman --skip-libs
$ brakeman --skip-files <comma separated list of files>

8

Chapter 2.

9

Language features

2.1. Tainting and restricted code execution
Ruby language includes a security mechanism to handle untrusted objects and restrict arbitrary code
execution. This mechanism consists of two parts: first is an automated way of marking objects in Ruby
as coming from untrusted source, called tainting. The second part is mechanism for restricting code
execution and prevents certain potentially dangerous functions being executed on tainted data. Ruby
interpreter can run in several safe levels, each of which defines different restrictions.

This mechanism (especially restricted code execution) is implementation specific and is not part of
Ruby specification. Other Ruby implementations such as Rubinius and JRuby do not implement safe
levels. However, taint flag is part of the rubyspec.

2.1.1. Object.tainted?
Each object in Ruby carries a taint flag which marks it as originating from unsafe source. Additionally,
any object derived from tainted object is also tainted. Objects that come from external environment
are automatically marked as tainted, which includes command line arguments (ARGV), environment
variables (ENV), data read from files, sockets or other streams. Environment variable PATH is
exception: it is tainted only if it contains a world-writable directory.

To check whether object is tainted and change taintedness of object, use methods
Object.tainted?, Object.taint and Object.untaint:

>> input = gets
exploitable
=> "exploitable\n"
>> input.tainted?
=> true
>> input.untaint
=> "exploitable\n"
>> input.tainted?
=> false

Note

Literals (such as numbers or symbols) are exception: they do not carry taint flag and are always
untainted.

2.1.2. Object.untrusted?
At higher safe levels (see safe level 4 below) any code is automatically untrusted and interpreter
prevents execution of untrusted code on trusted objects. In Ruby 1.8, taint flag is also used to mark
objects as untrusted, so untrusted code is not allowed to modify untainted objects. In addition, any
object created by untrusted code is tainted. This effectively allows to sandbox an untrusted code,
which will not be allowed to modify "trusted" objects.

Mixing taint and trust of object has serious drawback - untrusted code is allowed to modify all tainted
objects (even if they come from trusted code).

Chapter 2. Language features

10

Ruby 1.9 adds another flag to each object to mark it as untrusted. Untrusted code is now allowed
only to modify untrusted objects (ignoring taint flag), and objects created by untrusted code are
automatically marked as untrusted and tainted. To check and modify trust flag use methods
Object.untrusted?, Object.untrust and Object.trust.

However, Ruby 2.1 deprecates trust flag and the behaviour of above methods is the same as
Object.tainted?, Object.taint and Object.untaint. This change comes together with
removal of safe level 4, which makes trust flag useless (see issue on ruby-lang1 or read below).

2.1.3. $SAFE
Ruby interpreter can run in restricted execution mode with several levels of checking, controlled by
global variable $SAFE. There are 5 possible levels: 0,1,2,3,4 with 0 being default safe level. $SAFE is
thread-local and its value can only be increased (at least in theory - in practice there are well known
ways how to work around restricted code execution or decrease a safe level. See Section 2.1.3.1,
“Security considerations of $SAFE”). Safe level can be changed by assigning to $SAFE or with -
T<level> argument.

Safe levels have following restrictions:
 level 0

strings from streams/environment/ARGV are tainted (default)

 level 1
dangerous operations on tainted values are forbidden (such as eval, require etc.)

 level 2
adds to the level 1 also restrictions on directory, file and process operations

 level 3
in addition all created objects are tainted and untrusted

 level 4
code running in this level cannot change trusted objects, direct output is also restricted. This safe
level is deprecated2 since Ruby 2.1

There is a lack of documentation of what is restricted in each safe level. For more exhausting
description refer to Programming Ruby: Pragmatic programmer`s guide3.

2.1.3.1. Security considerations of $SAFE
Design of restricted code execution based on $SAFE is inherently flawed. Blacklist approach is
used to restrict operation on each level, which means any missed function creates a vulnerability.
In past several security updates were related to restricted code execution and taint flag (see
CVE-2005-23374, CVE-2006-3694, CVE-2008-36555, CVE-2008-36576, CVE-2011-10057,
CVE-2012-44648,CVE-2012-44669 and CVE-2013-206510).

1 https://bugs.ruby-lang.org/issues/8468
2 https://bugs.ruby-lang.org/issues/8468
3 http://ruby-doc.com/docs/ProgrammingRuby/
4 https://www.ruby-lang.org/en/news/2005/10/03/ruby-vulnerability-in-the-safe-level-settings/
5 https://www.ruby-lang.org/en/news/2008/08/08/multiple-vulnerabilities-in-ruby/
6 https://www.ruby-lang.org/en/news/2008/08/08/multiple-vulnerabilities-in-ruby/
7 https://www.ruby-lang.org/en/news/2011/02/18/exception-methods-can-bypass-safe/
8 https://www.ruby-lang.org/en/news/2012/10/12/cve-2012-4464-cve-2012-4466/
9 https://www.ruby-lang.org/en/news/2012/10/12/cve-2012-4464-cve-2012-4466/

https://bugs.ruby-lang.org/issues/8468
https://bugs.ruby-lang.org/issues/8468
http://ruby-doc.com/docs/ProgrammingRuby/
https://www.ruby-lang.org/en/news/2005/10/03/ruby-vulnerability-in-the-safe-level-settings/
https://www.ruby-lang.org/en/news/2008/08/08/multiple-vulnerabilities-in-ruby/
https://www.ruby-lang.org/en/news/2008/08/08/multiple-vulnerabilities-in-ruby/
https://www.ruby-lang.org/en/news/2011/02/18/exception-methods-can-bypass-safe/
https://www.ruby-lang.org/en/news/2012/10/12/cve-2012-4464-cve-2012-4466/
https://www.ruby-lang.org/en/news/2012/10/12/cve-2012-4464-cve-2012-4466/
https://www.ruby-lang.org/en/news/2013/05/14/taint-bypass-dl-fiddle-cve-2013-2065/
https://bugs.ruby-lang.org/issues/8468
https://bugs.ruby-lang.org/issues/8468
http://ruby-doc.com/docs/ProgrammingRuby/
https://www.ruby-lang.org/en/news/2005/10/03/ruby-vulnerability-in-the-safe-level-settings/
https://www.ruby-lang.org/en/news/2008/08/08/multiple-vulnerabilities-in-ruby/
https://www.ruby-lang.org/en/news/2008/08/08/multiple-vulnerabilities-in-ruby/
https://www.ruby-lang.org/en/news/2011/02/18/exception-methods-can-bypass-safe/
https://www.ruby-lang.org/en/news/2012/10/12/cve-2012-4464-cve-2012-4466/
https://www.ruby-lang.org/en/news/2012/10/12/cve-2012-4464-cve-2012-4466/

Dangerous methods

11

Warning

Design of restricted code execution based on $SAFE is inherently flawed and cannot be used to
run untrusted code even at the highest safe level. It must not be used as mechanism to create a
secure sandbox, as attacker will be able to work around the restrictions or decrease safe level.

One example of how exploitable the design is comes from CVE-2013-206511:

require 'fiddle'

$SAFE = 1
input = "uname -rs".taint
handle = DL.dlopen(nil)
sys = Fiddle::Function.new(handle['system'], [Fiddle::TYPE_VOIDP], Fiddle::TYPE_INT)
sys.call DL::CPtr[input].to_i

Even though safe level 1 should restrict execution of system commands, this can be bypassed using
Fiddle library, which is an extension to translate a foreign function interface with Ruby. Exploit above
bypasses safe level by passing input to system call as numeric memory offset. Since numbers as
literals cannot be tainted, code cannot check taintedness of input.

Note

However, running application with higher safe level is still useful for catching unintended
programming errors, such as executing eval on tainted string.

2.2. Dangerous methods
Ruby contains number of methods and modules that should be used with caution, since calling them
with input potentially controlled by attacker might be abused into arbitrary code execution. These
include:
• Kernel#exec, Kernel#system, backticks and %x{...}

• Kernel#fork, Kernel#spawn

• Kernel#load, Kernel#autoload

• Kernel#require, Kernel#require_relative

• DL and Fiddle module

• Object#send, Object#__send__ and Object#public_send

• BasicObject#instance_eval, BasicObject#instance_exec

10 https://www.ruby-lang.org/en/news/2013/05/14/taint-bypass-dl-fiddle-cve-2013-2065/
11 https://www.ruby-lang.org/en/news/2013/05/14/taint-bypass-dl-fiddle-cve-2013-2065/

https://www.ruby-lang.org/en/news/2013/05/14/taint-bypass-dl-fiddle-cve-2013-2065/
https://www.ruby-lang.org/en/news/2013/05/14/taint-bypass-dl-fiddle-cve-2013-2065/
https://www.ruby-lang.org/en/news/2013/05/14/taint-bypass-dl-fiddle-cve-2013-2065/

Chapter 2. Language features

12

• Module#class_eval, Module#class_exec, Module#module_eval, Module#module_exec

• Module#alias_method

2.3. Symbols
Symbols in MRI Ruby are used for method, variable and constant lookup. They are implemented as
integers so that they are faster to look up in hastables. Once symbol is created, memory allocated for
it is never freed. This creates opportunity for attacker: if he is able to create arbitrary symbols, he could
flood the application with unique symbols that will never be garbage collected. Memory consumption of
Ruby process would only grow until it runs out of memory, resulting in Denial of Service attack.

Application developers should be careful when calling to_sym or intern on user-supplied strings.
Additionally, other methods may convert supplied arguments to symbols internally, for example
Object.send, Object.instance_variable_set, Object.instance_variable_get,
Module.const_get or Module.const_set:

>> Symbol.all_symbols.size
=> 2956
>> Module.const_get('MY_SYMBOL')
NameError: uninitialized constant Module::MY_SYMBOL
>> Symbol.all_symbols.size
=> 2957

Array of all currently defined symbols is available through Symbol.all_symbols class method.

Starting from Ruby 2.2, a new method Symbol.find? will be added, that allows to check for
existence of a Symbol without defining it. Starting from Ruby 2.0, method rb_check_id is also
available to Ruby C extensions, which returns 0 when String passed as argument is not already
defined as Symbol. This makes overriding default intern methods possible.

SafeIntern12 gem makes use of rb_check_id and provides a patch for to_sym or intern methods
of String. When the conversion from String to Symbol would define a new Symbol, either nil is returned
or exception raised. Such approach prohibits creating any new Symbols other than those that are
already defined by the application. In case the string is trusted, new symbol can be created by calling
intern(:allow_unsafe).

2.4. Serialization in Ruby
Deserialization of untrusted data has been on the top of critical vulnerabilities in 2013 (prominent
examples are deserialization issues found in Ruby on Rails, see CVE-2013-015613, CVE-2013-027714

or CVE-2013-033315). There are several ways how to serialize objects in Ruby:

2.4.1. Marshal.load
Marshal.dump and Marshal.load can serialize and deserialize most of the classes in Ruby. If
application deserializes data from untrusted source, attacker can abuse this to execute arbitrary code.
Therefore, this method is not suitable most of the time and should never be be used on data from
unstrusted source.

12 https://github.com/jrusnack/safe_intern
13 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0156
14 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0277
15 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0333

https://github.com/jrusnack/safe_intern
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0277
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0333
https://github.com/jrusnack/safe_intern
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0156
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0277
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0333

YAML.load

13

2.4.2. YAML.load
YAML is a popular serialization format among Ruby developers. Just like Marshal.load it can be
used to deserialize most of the Ruby classes and also should never be used on untrusted data.

2.4.2.1. SafeYAML
Alternative approach is taken by SafeYAML16 gem - by default it allows deserialization of only few
types of objects that can be considered safe, such as Hash, Array, String etc. When application
requires serialization of certain types, developer can explicitly whitelist trusted types of objects:

 SafeYAML.whitelist!(FrobDispenser, GobbleFactory)

This approach is more versatile, since it disables serialization of unsafe classes, yet allows developer
to serialize know benign object. Requiring safe_yaml will patch method YAML.load.

2.4.3. JSON.parse and JSON.load
JSON format supports only several primitive data types such as strings, arrays, hashes, numbers etc.
This certainly limits the attack surface, but it should not give developer false sense of security - one
example is CVE-2013-033317 vulnerability in Ruby on Rails, when parser used for deserialization of
JSON data actually converted data to a subset of YAML and used YAML.load to deserialize.

However, it is possible to extend Ruby classes to be JSON-dumpable:

class Range
 def to_json(*a)
 {
 'json_class' => self.class.name,
 'data' => [first, last, exclude_end?]
 }.to_json(*a)
 end

 def self.json_create(o)
 new(*o['data'])
 end
end

This will allow instances of Range class to be serialized with JSON:

>> (1..10).to_json
=> "{\"json_class\":\"Range\",\"data\":[1,10,false]}"

During deserialization, JSON gem will try to look up class referenced by "json_class", which might
create new Symbol if the class does not exist, possibly allowing Denial of Service (see Section 2.3,
“Symbols”):

>> Symbol.all_symbols.size
=> 3179
>> JSON.parse('{"json_class":"NonexistentClass"}')

16 http://danieltao.com/safe_yaml/
17 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0333

http://danieltao.com/safe_yaml/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0333
http://danieltao.com/safe_yaml/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0333

Chapter 2. Language features

14

ArgumentError: can't get const NonexistentClass: uninitialized constant NonexistentClass
>> Symbol.all_symbols.size
=> 3180

To disable this, :create_additions => false option can be passed as second argument:

>> JSON.parse('{"json_class":"NonexistentClass"}',:create_additions => false)
=> {"json_class"=>"NonexistentClass"}

This behaviour has changed in response to CVE-2013-026918 and JSON.parse now defaults to
:create_additions => false. However, default behaviour has not changed for JSON.load,
which is dangerous to call on untrusted input.

2.4.4. Exploiting deserialization vulnerabilities
To exploit deserialization vulnerability, there must already be a dangerous class loaded in the current
namespace. In particular, it contains unsafe init_with() or []= methods, that get called during
deserialization. This might seem like an unlikely event, however, its very likely in case of big projects
like Ruby on Rails.

CVE-2013-015619 vulnerability in Ruby on Rails can be used as an example. A vulnerable class in this
case was ActionDispatch::Routing::RouteSet::NamedRouteCollection, which contained
code like this:

class NamedRouteCollection
 alias []= add

 def add(name, route)
 routes[name.to_sym] = route
 define_named_route_methods(name, route)
 end

 def define_named_route_methods(name, route)
 define_url_helper route, :"#{name}_path",
 route.defaults.merge(:use_route => name, :only_path => true)
 define_url_helper route, :"#{name}_url",
 route.defaults.merge(:use_route => name, :only_path => false)
 end

 def define_url_helper(route, name, options)@module.module_eval <<-END_EVAL
 def #{name}(*args)
 # ... code
 end
 END_EVAL
 end

 ...

Even though module_eval is hidden under several layers of method calls, calling []= effectively
passes first argument to the define_url_helper, where it gets evaluated.

To exploit vulnerable class, it is enough to deserialize YAML payload below:

18 https://www.ruby-lang.org/en/news/2013/02/22/json-dos-cve-2013-0269/
19 https://groups.google.com/forum/?fromgroups=#!topic/rubyonrails-security/61bkgvnSGTQ

https://www.ruby-lang.org/en/news/2013/02/22/json-dos-cve-2013-0269/
https://groups.google.com/forum/?fromgroups=#!topic/rubyonrails-security/61bkgvnSGTQ
https://www.ruby-lang.org/en/news/2013/02/22/json-dos-cve-2013-0269/
https://groups.google.com/forum/?fromgroups=#!topic/rubyonrails-security/61bkgvnSGTQ

Exploiting deserialization vulnerabilities

15

--- !ruby/hash:NamedRouteCollection
foo; end; system 'rm /etc/passwd'; def bar: baz

Before deserialization, Ruby's YAML parser Psych first looks at the declared type, which says this
object is an instance of NamedRouteCollection and subclass of Ruby's Kernel::Hash class.

Deserialization of hashes from YAML to Ruby makes use of []= method. Given YAML like

--- !ruby/hash:MyHash
key1: value1
key2: value2

deserialization process is equivalent to calling

newobj = MyHash.new
newobj['key1'] = 'value1'
newobj['key2'] = 'value2'
newobj

In the case of YAML payload, key and value pair is

['foo; end; system 'rm /etc/passwd'; def bar','baz']

so deserialization process will call []= method on NamedRouteCollection with key 'foo; end;
system 'rm /etc/passwd'; def bar'.

This gets passed to define_url_helper as an argument and following code gets evaluated:

def foo; end; system 'rm /etc/passwd'; def bar(*args)
 # ... code
end

Reordering the code above to be more readable, this is equivalent to

def foo
end

system 'rm /etc/passwd'

def bar(*args)
 # ... code
end

2.4.4.1. References
• Aaron Patterson's blog http://tenderlovemaking.com/2013/02/06/yaml-f7u12.html

• Charlie Sommerville's blog https://charlie.bz/blog/rails-3.2.10-remote-code-execution

• Metasploit's blog https://community.rapid7.com/community/metasploit/blog/2013/01/09/serialization-
mischief-in-ruby-land-cve-2013-0156

• Extending Hash http://www.yaml.org/YAML_for_ruby.html#extending_kernel::hash

http://tenderlovemaking.com/2013/02/06/yaml-f7u12.html
https://charlie.bz/blog/rails-3.2.10-remote-code-execution
https://community.rapid7.com/community/metasploit/blog/2013/01/09/serialization-mischief-in-ruby-land-cve-2013-0156
https://community.rapid7.com/community/metasploit/blog/2013/01/09/serialization-mischief-in-ruby-land-cve-2013-0156
http://www.yaml.org/YAML_for_ruby.html#extending_kernel::hash

Chapter 2. Language features

16

2.5. Regular expressions
A common gotcha in Ruby regular expressions relates to anchors marking the begninning and the
end of a string. Specifically, ^ and $ refer to the beginning and the end of a line, rather then a string. If
regular expression like /^[a-z]+$ is used to whitelist user input, attacker can bypass it by including
newline. To match the beginning and the end of a string use anchors \A and \z.

>> puts 'Exploited!' if /^benign$/ =~ "benign\n with exploit"
Exploited!
=> nil
>> puts 'Exploited!' if /\Abenign\z/ =~ "benign\n with exploit"
=> nil

2.6. Object.send
Object.send is a method with serious security impact, since it invokes any method on object,
including private methods. Some methods in Ruby like eval or exit! are private methods of Object
and can be invoked using send:

>> Object.private_methods.include?(:eval)
=> true
>> Object.private_methods.include?(:exit)
=> true
>> Object.send('eval', "system 'uname'")
Linux
=> true

Alternative is Object.public_send, which by definition only invokes public methods on object.
However, this does not prevent attacker from executing only private methods, since Object.send
itself is (and has to be) public:

>> Object.public_send("send","eval","system 'uname'")
Linux
=> true
>> Object.public_send("send","exit!") # exits

Developers should be careful when invoking send and public_send with user controlled arguments.

2.7. SSL in Ruby
Ruby uses OpenSSL implementation of common cryptographic primitives, which are accessible
through OpenSSL module included in standard library. This module is then used by other parts of
standard library to manage SSL, including Net::HTTP, Net::POP, Net::IMAP, Net::SMTP and
others.

There are four valid verification modes VERIFY_NONE, VERIFY_PEER,
VERIFY_FAIL_IF_NO_PEER_CERT and VERIFY_CLIENT_ONCE. These correspond to underlying
OpenSSL modes20.

SSL connection can be created using OpenSSL module directly:

20 https://www.openssl.org/docs/ssl/SSL_CTX_set_verify.html#NOTES

https://www.openssl.org/docs/ssl/SSL_CTX_set_verify.html#NOTES
https://www.openssl.org/docs/ssl/SSL_CTX_set_verify.html#NOTES

Certificate store

17

>> require 'openssl'
=> true
>> require 'socket'
=> true
>> tcp_client = TCPSocket.new 'redhat.com', 443
=> #<TCPSocket:fd 5>
>> ssl_context = OpenSSL::SSL::SSLContext.new
=> #<OpenSSL::SSL::SSLContext:0x00000000fcf918>
>> ssl_context.set_params
=> {:ssl_version=>"SSLv23", :verify_mode=>1, :ciphers=>"ALL:!ADH:!EXPORT:!SSLv2:RC4+RSA:
+HIGH:+MEDIUM:+LOW", :options=>-2147480585}
>> ssl_client = OpenSSL::SSL::SSLSocket.new tcp_client, ssl_context
=> #<OpenSSL::SSL::SSLSocket:0x0000000106a418>
>> ssl_client.connect
=> #<OpenSSL::SSL::SSLSocket:0x0000000106a418>

Note the call to ssl_context.set_params: by default, when context is created, all its instance
variables are nil. Before using the context, set_params should be called to initialize them (when
called without argument, default parameters are chosen). In case this call is omitted and variables are
left uninitialized, certificate verification is not performed (effectively the same as VERIFY_NONE mode).
Default parameters are stored in the constant:

>> OpenSSL::SSL::SSLContext::DEFAULT_PARAMS
=> {:ssl_version=>"SSLv23", :verify_mode=>1, :ciphers=>"ALL:!ADH:!EXPORT:!SSLv2:RC4+RSA:
+HIGH:+MEDIUM:+LOW", :options=>-2147480585}

One of the side effects of set_params is that it also sets up certificate store with certificates from
default certificate area (see Section 2.7.1, “Certificate store” below):

>> ssl_context.cert_store
=> nil
>> ssl_context.set_params
=> {:ssl_version=>"SSLv23", :verify_mode=>1, :ciphers=>"ALL:!ADH:!EXPORT:!SSLv2:RC4+RSA:
+HIGH:+MEDIUM:+LOW", :options=>-2147480585}
>> ssl_context.cert_store
=> #<OpenSSL::X509::Store:0x00000000fea740>

2.7.1. Certificate store
Class OpenSSL::X509::Store implements certificate store in Ruby. Certificate store is similar to
store in web browsers - it contains trusted certificates that can be used to verify certificate chain. When
new certificate store is created, it contains no trusted certificates by default.

To populate certificate store with certificates, use one of methods:
• Store#add_file takes a path to DER/PEM encoded certificate

• Store#add_cert takes instance of X509::Certificate

• Store#add_path takes a path to a directory with trusted certificates

• Store#set_default_path adds certificates stored in default certificate area

OpenSSL installation usually creates a directory, which stores several trusted certificates (approach
similar to web browsers, that also come with predefined certificate store). To populate certificate store
with certificates that come with OpenSSL use Store#set_default_path. The path to default
certificate area is defined as:

Chapter 2. Language features

18

>> OpenSSL::X509::DEFAULT_CERT_AREA
=> "/etc/pki/tls"

2.7.2. Ruby libraries using OpenSSL
There are several libraries that build on top of OpenSSL. Depending on how a library uses
SSLContext, users may encounter exception from OpenSSL code saying the certificate verification
failed:

>> ssl_client.connect
OpenSSL::SSL::SSLError: SSL_connect returned=1 errno=0 state=SSLv3 read server certificate B:
 certificate verify failed
 from (irb):7:in `connect'
 from (irb):7

This usually happens when verify_mode is set to check the certificate, but the certificate store used
does not contain trusted certificate required to verify the SSL sent by the server.

Note

The worst advice that can be found on internet on how to fix SSL is to set

OpenSSL::SSL::VERIFY_PEER = OpenSSL::SSL::VERIFY_NONE

This redefines constant OpenSSL::SSL::VERIFY_PEER to have the same effect as
OpenSSL::SSL::VERIFY_PEER, effectively globally disabling certificate checking.

Take Net::IMAP as example (the code below refers to Ruby 1.9.3): initialize method for creating a
new IMAP connection has takes the following arguments:

def initialize(host, port_or_options = {},
 usessl = false, certs = nil, verify = true)
 ...

When SSL connection is used but certs and verify arguments are left to be assigned defaults
values, SSLError may be thrown when certificate sent by server cannot be verified.

Important

The correct solution is to always make sure certificate store used by SSLContext contains a
trusted certificate that can be used to verify the certificate sent by the server.

2.7.2.1. Behaviour in different Ruby versions
Default behaviour differs across Ruby versions: in Ruby 1.8, SSL enabled libraries usually falled back
to VERIFY_NONE mode. The above mentioned Net::IMAP#initialize looks like this:

Ruby libraries using OpenSSL

19

def initialize(host, port = PORT, usessl = false, certs = nil, verify = false)
 ...

Starting from Ruby 1.9, standard library defaults to VERIFY_PEER mode.

20

Chapter 3.

21

Web Application Security
Web application development is one of the most popular usages of Ruby language thanks to the
popularity of Ruby on Rails. Following chapter is dedicated to security of web applications with most
of the content being framework-independent, while examples and implmentation specific problems are
targeted to Ruby on Rails.

Ruby on Rails as a popular web framework already helps with a web application security by providing
secure defaults, useful helper methods, automatic html escaping etc.

3.1. Authentication and session management

3.2. Authorization and user management

3.3. Common attacks and mitigations

3.3.1. Cross site scripting (XSS)

3.3.2. Cross site request forgery (CSRF)
By default, browsers include user's authentication tokens (such as cookies, HTTP basic authentication
credentials etc.) with every request to the web application. This allows client to authenticate once
and each following request to the web application will be authenticated without prompting the user for
credentials. However, this gives client's browser ability to make authenticated requests on behalf of the
user without user's explicit consent.

This behaviour can be misused by the attacker to confuse client's browser into issuing an
authenticated request. For example, if attacker's website contains this simple script tag

<script src="http://victimbank.com/transfermoney?to=attacker&amount=1000"/>

browser will issue a HTTP GET request to victimbank.com with parameters supplied by the attacker.
The browser does not know anything about the resource that is being requested by the attacker's site
- whether it is malicious of harmless - and it requests the script from the specified URL. If the user is
authenticated at that moment, browser will also include his credentials, so the request would look like
this:

GET /transfermoney?to=attacker&amount=1000 HTTP/1.1
Host: victimbank.com
Cookie: ...

Even though browser believes it is asking for a resource, web application will perform action specified
in the request from the client - in this case, send money to the attacker. Such web application is
vulnerable to Cross Site Request Forgery.

Chapter 3. Web Application Security

22

Important

Web application should not change state or perform security sensitive actions upon receiving
HTTP GET requests. Such behaviour is not compliant with HTTP and may create problems with
caches, browser prefetching etc.

It is not enough to make sure that web application does not use HTTP GET requests to perform
security sensitive actions - it is important that such requests are forbidden by the application. For
example, Rails application's action can be invoked only with non-GET requests throughout the
application, but still be routable through GET requests.

Restricting security-sensitive operations to non-GET requests does not protect from CSRF attack
itself. Even though common HTTP tags like , <script> and others can be used to issue HTTP
GET requests, there are other means to issue arbitrary requests against vulnerable application.

As example consider the code below:

<body onload="document.getElementById('f').submit()">
 <form id="f" action="http://victimbank.com/transfermoney" method="post" name="form1">
 <input name="to" value="attacker">
 <input name="amount" value="1000">
 </form>
</body>

If user visits page containing a code similar to this one, upon loading the page browser will send a
HTTP POST request with the parameters supplied by the attacker.

There are several mechanisms available, that allow web application to identify requests issued by a
third-party web page from the client's browser.

3.3.2.1. Synchronizer token pattern
OWASP recommended method of CSRF protection is to include a challenge token in each sensitive
request. The token must be unpredictable to the attacker, otherwise the attacker could guess it and
include with his forged request. The token must also be tied to user's session - if the token is shared
by users, they would be able to forge requests on behalf of others. It goes without saying that it
cannot be part of the authentication tokens, since they are sent with each request automatically, which
defeats the purpose of CSRF protection. However, this token needs to be generated only once per
each session.

The CSRF challenge token should be included in all non-GET requests, including Ajax requests. On
the server side, application has to verify the token is included in request and is valid, and reset session
otherwise.

Synchronizer token pattern is also default CSRF protection mechanism for Rails applications. To
enable CSRF protection, one has to enable it in application controller with

protect_from_forgery

Cross site request forgery (CSRF)

23

which will automatically include CSRF token in all non-get and XHR requests. The token itself is sent
by the server in meta tag of the web page like this:

<meta content="authenticity_token" name="csrf-param" />
<meta content="VBlgpnibfsxm1QykEmlOCbxqLRxx7kDGr57tjE+LLZk=" name="csrf-token" />

If the request is not verified to be CSRF-free, Rails resets the session by default:

def handle_unverified_request
 reset_session
end

If this does not effectively log out user due to application-specific behaviour, developers should
redefine handle_unverified_token.

The disadvantage of synchronizer token pattern is the need to rememnber the challenge token for
each session on the server side.

3.3.2.2. Double submit cookie pattern
This method mitigates the problem of keeping state on the server side. Each sensitive request shall
include a random value twice: in cookie, and as a request parameter. After receiving request, server
verified that both values are equal, so this mechanism is stateless.

Assuming the random value meets the requirements on CSRF token, attacker cannot forge the CSRF
requests. To do that, he would need an access to random value stored in a cookie of another site,
which is prevented by Same Origin Policy.

This mechanism is arguably less secure than synchronizer token pattern. While it is hard for the
attacker to read the random value from cookie, it is easier to write a value, for example by writing an
attacker-specified value from a subdomain.

3.3.2.3. Encrypted token pattern
Another stateless approach leverages encryption. The token sent by the server is triple User ID,
Timestamp and Nonce, encrypted with server-side secret key. The token sent to the client in a hidden
field, and returned by the client in a custom header field for Ajax requests or as a parameter for form-
based requests.

Validation of token does not require any state on the server side aside from secret key. Upon receiving
request, server decrypts the token and verifies User ID against session's User ID (if there is one) and
Timestamp to prevent replay attacks. If decryption of the token yields malformed data or any of the
checks fails, server blocks the potential attack.

3.3.2.4. Checking Referer header
Checking the Referer header to make sure that request does not originate from the third party site
is a common stateless CSRF protection mechanism. Even though it is possible for the user to spoof
referer header, it is not possible for the attacker in case of CSRF, since the Referer header is included
by the client's browser and outside of attackers control.

Even though it may seem to be the easiest mechanism to implement, it carries a lot of cornercases,
depends on configuration outside of applications control and is prone to compatibility issues.

One of the problems of Referer header is potential disclosure of private information, due to which
some users may configure their browsers to not include Referer header at all. Referer header is also

Chapter 3. Web Application Security

24

omitted when browsing from HTTPS secured site to HTTP. Since attacker can mount attack from
HTTPS protected page, web application has to deny requests without Referer header. This affects
compatibility - for example, when user directly types the URL (or bookmarks it), Referer header will be
empty and the application will the refuse request due to CSRF protection, creating usability problems.

From implementation standpoint, CSRF check needs to make sure that request originated from a
page from trusted domain, however path with parameters do not matter. It is therefore tempting to
implement the check by verifying that Referer start with the domain, ignoring the rest of the path. For
example, if the Referer is "http://application.domain.com/some/page", the check would verify that it
starts with "http://application.domain.com" and allow the request. This can be bypassed if the attacker
mounts CSRF attack from "http://application.domain.com.evil.io".

Important

Checking the Referer header as CSRF protection mechanism is highly discouraged.

3.3.2.5. References
• OWASP - Cross Site Request Forgery: https://www.owasp.org/index.php/Cross-

Site_Request_Forgery_%28CSRF%29

• OWASP - CSRF Prevention cheat sheet: https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet

• CWE-352: Cross-Site Request Forgery (CSRF) https://cwe.mitre.org/data/definitions/352.html

• Encrypted Token pattern: http://insidethecpu.wordpress.com/2013/09/23/encrypted-token-pattern/

3.3.3. Command injection
One of the most widespread types of attack is command injection attack, where data from untrusted
source are being used by application to construct a command. The command is executed in the
context of application and when the untrusted data is not sanitized properly, attacker might use this
weakness to execute arbitrary command, potentially with elevated privileges.

3.3.3.1. SQL injection
SQL injection is the most common type of command injection, where application constructs a SQL
query from user supplied data. If not properly escaped, malicious attacker might be able to execute
any SQL command on application's database, that can lead to information disclosure, unauthorized
modification of data, execution of administrative operations or destruction of data.

Ruby on Rails provides a good protection against SQL injection attacks by escaping several special
SQL characters by default. However, this is far from making Rails applications safe against SQL
injection. Consider a query against database:

User.where("name = '#{params[:name]}'")

This would be translated to following SQL query:

SELECT "users".* FROM "users" WHERE (name = 'username')

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://cwe.mitre.org/data/definitions/352.html
http://insidethecpu.wordpress.com/2013/09/23/encrypted-token-pattern/

Command injection

25

Such statement is vulnerable to SQL injection, since part of the SQL statement is passed as string
in argument and Rails does not perform any escaping. Malicious string can match apostrophe and
bracket in the statement, the follow with semicolon as statement separator and arbitrary SQL query. At
the end double hyphens are necessary to comment out superfluous apostrophe:

>> params[:name] = "'); <arbitrary statement> --"

Using Rails console we can see this how such input is translated to a SQL query:

>> params[:name] = "noname'); SELECT name, password_digest FROM users where userid = 'admin'
 --"
=> "noname'); SELECT name, password_digest FROM users where userid = 'admin' --"

>> User.where("name = '#{params[:name]}'")
 User Load (2.4ms) SELECT "users".* FROM "users" WHERE (name = 'noname'); SELECT name,
 password_digest FROM users where userid = 'admin' --')
=> [#<User name: "Administrator", password_digest: "$2a
10m7XI628GGkdTH1JmkdMfluJyA360V1.QBtSbFMrc5Jwm...">]

3.3.3.1.1. (Un)safe Active Record queries
Safer approach is to pass either array or hash as an argument and use Rails escaping mechanism to
protect against SQL, as in

User.where("name = ?", params[:name])

or

User.where(name: params[:name])

Alternatively, ActiveRecord also provides ActiveRecord::sanitize method which can be used to
sanitize a string explicitly.

However, other ActiveRecord methods may be vulnerable to surprising SQL injection attacks, too.
Consider exists? - when given string as an argument, it tries to convert it to integer, returning 0
when the conversion is impossible:

>> User.exists?("1")
 User Exists (0.9ms) SELECT 1 AS one FROM "users" WHERE "users"."id" = 1 LIMIT 1
=> true

>> User.exists?("abc")
 User Exists (0.8ms) SELECT 1 AS one FROM "users" WHERE "users"."id" = 0 LIMIT 1
=> false

This might look like a safe behaviour and imply the following query is safe from SQL injection attack:

User.exists?(params[:id])

The exists? method also accepts array as an argument - in which case first element of array is used
directly in SQL query without escaping:

Chapter 3. Web Application Security

26

>> params[:id] = ["id = '1'"]
=> ["id = '1'"]

>> User.exists?(params[:id])
 User Exists (0.8ms) SELECT 1 AS one FROM "users" WHERE (id = '1') LIMIT 1
=> true

This makes SQL injection attack possible:

>> params[:id] = ["1=1);UPDATE users SET password_digest='my_digest' WHERE userid='admin'
 --"]
=> ["1=1);UPDATE users SET password_digest='my_digest' WHERE userid='admin' --"]

>> User.exists?(params[:id])
 User Exists (67.6ms) SELECT 1 AS one FROM "users" WHERE (1=1);UPDATE users SET
 password_digest='my_digest' WHERE userid='admin' --) LIMIT 1
=> false

>> User.where(userid: 'admin').first.password_digest
 User Load (1.0ms) SELECT "users".* FROM "users" WHERE "users"."userid" = 'admin' LIMIT 1
 User Inst (0.4ms - 1rows)
=> "my_digest"

The last obstacle is passing the user supplied parameter as an Array. Usually, all values of parameters
are passed by Rack as strings, but it is also possible to explicitly specify that value of parameter is
supposed to be Array in the HTTP request. If the parameter looks like

key[]=value

Rack assumes it should be an Array and performs conversion before the parameter is passed to Rails
application. HTTP request that exploits exists? method called on params[:id] then looks like this:

GET /controller/action?id[]=1 = 1);UPDATE users SET password_digest='my_digest' WHERE
 userid='admin' --

3.3.3.2. OS command injection
Another common vulnerability is invoking underlying OS commands with user supplied input without
proper sanitization. Ruby provides several commands that can be used and if user's input is used
as parameter to a system command without sanitization, he might be able to misuse it to execute
arbitrary command.

For example, when application contains call like

system "echo Hello #{params[:name]}!"

user can use semicolon to terminate echo command and invoke command of his choice:

>> params[:name] = 'Joe;rm -rf /'
=> "Joe;touch /tmp/abc"
>> system "echo Hello #{params[:name]}"
Hello Joe
=> true # and rm gets executed

Cross site tracing (XST)

27

system command can be used to explicitly separate OS command to invoke from the arguments
passed to it:

system(command, *parameters)

Important

Whenever system command is executed with arguments from untrusted source, extra care must
be taken to prevent arbitrary code execution.

Also see Section 2.2, “Dangerous methods”.

3.3.3.3. References
• Ruby on Rails Security Guide - SQL injection: http://guides.rubyonrails.org/security.html#sql-

injection

• Rails SQL Injection: http://rails-sqli.org/

• OWASP SQL Injection: https://owasp.org/index.php/SQL_Injection

• CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection'):
http://cwe.mitre.org/data/definitions/89.html

• CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection'):
http://cwe.mitre.org/data/definitions/77.html

3.3.4. Cross site tracing (XST)

3.3.5. Guidelines and principles

3.4. Client-side security

3.4.1. Same origin policy
One of the most important concepts of web applications is same origin policy. It is a protection
mechanism implemented by modern web browsers that isolates web applications from each other on
the client side. This isolation is performed on domain names under the assumption that content from
different domains comes from different entities. In theory, this means every domain has its own trust
domain and interaction across domains is restricted. In practice, there are multiple ways of bypassing
this mechanism, malicious ones often creating confused deputy problem where client`s browser is
tricked into submitting attacker-specified request under his authority.

Same origin policy prevents Javascript and other scripting languages to access DOM across domains.
In addition it also applies to XMLHttpRequest Javascript API provided by browsers and prohibits
page of sending XMLHttpRequest requests against different domains. On the downside, actual
implementation by different browsers may vary in important details. Since the actual behaviour

http://guides.rubyonrails.org/security.html#sql-injection
http://guides.rubyonrails.org/security.html#sql-injection
http://rails-sqli.org/
https://owasp.org/index.php/SQL_Injection
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/77.html

Chapter 3. Web Application Security

28

depends on implementation in each browser, each vendor usually implements some exceptions
intended to help web developers, which reduce the reliability of this mechanism.

Same origin policy
Two pages share the same origin if the protocol, hostname and port are the same for both.

Following is a table with outcome of same origin policy check against URL http://web.company.com/
~user1

Table 3.1. Sample CALS Table

URL Outcome Reason

http://web.company.com/
~user2

Success

https://web.company.com/
~user1

Fail Different protocol

http://store.company.com/
~user1

Fail Different hostname

https://web.company.com:81/
~user1

Fail Different port

As the example above shows, if a company servers webpages of users from the same domain
web.company.com, then pages of individual users are not restricted by same origin policy when
accessing each other, as they are coming from the same domain.

Browsers treat hostname of server as string literal, which creates another exceptional case: even if
IP address of company.com is 10.20.30.40, browser will enforce same origin policy between http://
company.com and http://10.20.30.40.

3.4.1.1. Setting document.domain
A page can also define its origin by setting document.domain property to a fully-qualified suffix of
the current hostname. When two pages have defined the same document.domain, same origin
policy is not applied. However, document.domain has to be specified mutually - it is not enough for
just one page to specify its document.domain. Also, when document.domain property is set, port
is set to null, while still being checked. This means company.com:8080 cannot bypass same origin
policy and access company.com by setting document.domain = "company.com", as their ports
(null vs 80) differ.

However, document.domain has several issues:
• When web.company.com and storage.company.com need to share resources and set
document.domain = company.com, any subdomain can set its document.domain and access
both of them, even though this access was not intended to be permitted.

• When this mechanism cannot be used, cross-domain requests are forbidden even for legitimate
use, which creates problem for websites that use multiple (sub)domains.

3.4.1.2. Unrestricted operations
Same Origin Policy restricts Javascript access to DOM and XMLHttpRequest across domains.
However, there are multiple operations that are not restricted:
• Javascript embedding with <script src=".."><script>

• CSS embedding with <link rel="stylesheet" href="...">

• Anything with <frame> and <iframe>

Bypassing same origin policy

29

• .. and others

3.4.1.3. Additional resources
• Browser Security Handbook http://code.google.com/p/browsersec/wiki/Part2

• Same Origin Policy article on Mozilla Developer Network https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Same_origin_policy_for_JavaScript

3.4.2. Bypassing same origin policy
Same Origin Policy as security mechanism leaves a lot to be desired: on one hand, it is not flexible
enough to allow web developers use cross-domain resources in several legitimate usecases without
exceptions to the rule and workarounds, on the other hand, such exceptions create opportunities for
attacker.

There are several other mechanisms except document.domain that provide a way to relax Same
Origin Policy.

3.4.2.1. Cross-origin resource sharing (CORS)
Cross-origin resource sharing is a mechanism that allows web application to inform browser, whether
cross domain requests against the requested resource are expected.

Web browsers that conform to the CORS alter their behaviour of handling XMLHttpRequests: instead
of denying the cross-domain request immediately, HTTP request is sent with Origin header. Let's
assume http://example.com/testpage is making a XMLHttpRequest against http://content.com/
wanted_image. Request would contain:

GET /wanted_image HTTP/1.1
Referrer: http://example.com/testpage
Origin: http://example.com

If the server allows sharing of the resource with domain that originated the request, the response
would include:

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://example.com
..

By sending Access-Control-Allow-Origin header, server explicitly tells browser that this
cross domain request shall be allowed. Allowed values of Access-Control-Allow-Origin are:
* (denoting any domain, effectively marking the resource public) or space separated list of allowed
origins (in practice, this usually contains just a single domain - one that was specified in Origin header
in request).

If the resource should not be accessible by the originating domain, server ought not include Access-
Control-Allow-Origin header in the response. By default, upon receiving such response from server
browser will not pass the response back to the page that originated the request.

Several additional considerations:
• If the browser is outdated and does not conform to CORS, cross domain request will be denied

immediately without sending the request to the server. This means usability of web applications
relying on CORS might be restricted on old browsers.

http://code.google.com/p/browsersec/wiki/Part2
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Same_origin_policy_for_JavaScript

Chapter 3. Web Application Security

30

• If the web server does not conform to CORS, the Access-Control-Allow-Origin header will not be
included in the response and the request will be denied on the client side.

• Cross-domain access to resources is enforced on the side of the client. However, since the request
includes Origin header, server may also restrict access to resources from other domains (e.g. by
returning nothing).

• If the origin of page is unknown (for example webpage is running from a file), browsers will send

Origin: null

3.4.2.1.1. Using CORS in Rack-based applications
CORS support for Rack-based applications is provided by rack-cors1 gem. After adding it to the
applications Gemfile

gem 'rack-cors', :require => 'rack/cors'

and configure Rails by modifying config/application.rb:

module YourApp
class Application < Rails::Application

 # ...

 config.middleware.use Rack::Cors do
 allow do
 origins '*'
 resource '*', :headers => :any, :methods => [:get, :post, :options]
 end
 end

end
end

This configuration permits all origins access to any resource on the server via GET, POST and
OPTIONS methods. Customizing the configuration, developer of the application can restrict cross-
domain acess to resources by origin, headers and methods.

3.4.2.2. JSON with padding (JSONP)
JSONP is a very common way of hacking around the Same Origin Policy. This mechanism makes use
of <script> tag and the fact that embedding Javascript code from other domains is not resctricted by
the same origin policy. Since the code references by src attribute of <script> tag is loaded, it can be
used as a vehicle to carry data and return them after evaluation.

Lets assume webpage needs to access resource at http://example.com/resource/1, which returns
JSON data like:

{"Key1": "Value1", "Key2": "Value2"}

1 https://github.com/cyu/rack-cors

https://github.com/cyu/rack-cors
https://github.com/cyu/rack-cors

Bypassing same origin policy

31

When webpage requests the resource with

<source src="http://example.com/resource/1"></source>

after receiving the response, browser will try to evaluate received data. Since data are not executable,
interpreter would end with error and data would not be accessible to the code that requested it.

To work around this, it would be enough if the returned data were enclosed with function, that would
be able to parse them on the client side. Suppose function parseData can accept JSON data as
argument, parse it and make it accessible to the rest of the page:

parseData({"Key1": "Value1", "Key2": "Value2"})

However, web server does not know the name of the function that will parse data. Final piece is to
pass the name of data-parsing function to server as parameter in request:

<script src="http://example.com/resource/1?jsonp=parseData"></script>

This technique of sharing resources across domains carries bigger security risks than CORS. Since
source tag does not fall under Same Origin Policy on the client side, browser sends normal HTTP
GET request without Origin header. Server that receives request has no means to know that the
request was generated on behalf of page from other domain. Since neither the browser nor the server
checks this kind of cross-domain requests, last obstacle that prevents exploitation is the fact that
returned response is evaluated as Javascript code.

Example of this type of vulnerability is CVE-2013-64432. Cloud Forms Manage IQ application has
been found vulnerable to cross-domain requests issued using JSONP. UI of application makes heavy
use of Javascript and in this particular case changing the tab to "Authentication" would generate this
HTTP request through XMLHttpRequest API:

GET /ops/change_tab/?tab_id=settings_authentication&callback=...
Referrer: ...
Cookie: ...

Response returned by the server would look like this:

HTTP/1.1 200 OK
....

miqButtons('hide');
Element.replace("ops_tabs", "<div id=\"ops_tabs\" ...");

where ops_tabs div contained html code of the Authentication tab including form with hidden CSRF
token. To exploit this vulnerability, attacker would patch Element.replace function on his page and
issue a JSONP request against CFME server.

<script src='http://code.jquery.com/jquery-1.10.2.min.js'></script>

2 https://access.redhat.com/security/cve/CVE-2013-6443

https://access.redhat.com/security/cve/CVE-2013-6443
https://access.redhat.com/security/cve/CVE-2013-6443

Chapter 3. Web Application Security

32

<script>
function test() {
$.ajax({
 url: $("input[name=url]").val() + '/ops/change_tab/?tab_id=settings_authentication',
 dataType: 'jsonp'
});
};

var Element = { replace: function (a,text) {
...
}
>/script>

This way attacker can run arbitrary code on returned response from the server: since the request also
contains CSRF token, it is easy for attacker to steal it and issue successful CSRF request on behalf of
currently logged-in user.

3.4.2.3. Additional resources
• W3C Recommendation - Cross-Origin Resouce Sharing http://www.w3.org/TR/access-control/

• cross-site xmlhttprequest with CORS http://hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-
with-cors/

• Ajax and Mashup Security - Open Ajax Alliance http://www.openajax.org/whitepapers/Ajax%20and
%20Mashup%20Security.php

• CVE-2013-6443 and reproducer by Martin Povolný https://access.redhat.com/security/cve/
CVE-2013-6443

3.4.3. Content Security Policy (CSP)
Content Security policy is a comprehensive web security mechanism that allows web applications to
declaratively list all sources of trusted content. Originally developed at Mozilla and later adopted by
Webkit, Content Security Policy is now a W3C Candidate Recommendation.

One of the persistent problems in web application security is the lack of distinction between content
loaded from trusted sources and potentially malicious content injected or referenced in the web page.
Content Security Policy takes a comprehensive approach: a new HTTP header is introduced to allow
server to send a whitelist of trusted sources to the client. Conformant user agents follow the policy
declared in the header and block content from untrusted sources.

Several headers are related to Content Security Policy:
• X-Content-Security-Policy: experimental header originally introduced by Mozilla

• X-WebKit-CSP: experimental header used in WebKit based browsers

• Content-Security-Policy: a standard header proposed by W3C, that shall be used as
replacement for the two abovementioned experimenal headers. However, older versions of
browsers may support only experimental versions of this header, so web application developers that
seek the best coverage may want to use all three headers together.

Value of the header consists of several directives separated by semicolon, each of them followed by
list of sources separated by spaces. Following simple policy declares http://example.com as a trusted
sources of scripts and disables all other sources:

Content-Security-Policy: default-src 'none'; script-src http://example.com

http://www.w3.org/TR/access-control/
http://hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-with-cors/
http://hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-with-cors/
http://www.openajax.org/whitepapers/Ajax%20and%20Mashup%20Security.php
http://www.openajax.org/whitepapers/Ajax%20and%20Mashup%20Security.php
https://access.redhat.com/security/cve/CVE-2013-6443
https://access.redhat.com/security/cve/CVE-2013-6443

Content Security Policy (CSP)

33

Since CSP uses whitelist approach, loading scripts from any other domain would not be permitted.
Suppose webpage contains following:

<script src="http://malicious.com"></script>

In Firefox this would generate following warning:

[13:16:03.713] CSP WARN: Directive script-src http://example.com:80 violated by http://
malicious.com/

This approach works in case of content with known origin, but this does not solve problem with inlined
scripts such as

<script>exploit()</script>

CSP addresses this problem by completely banning execution of any scripts or CSS inlined with
<script> or JavaScript URI and similar restrictions apply on eval() like mechanisms. This is
necessary from security standpoint, however, it also means that web application developers who want
to adopt CSP need to make sure their application does not make use of banned functions. To mitigate
this CSP includes reporting capability via report-uri directive, reporting only mode via Content-
Security-Policy-Report-Only header and ability to disable protection with 'unsafe-inline'
and 'unsafe-eval' sources (see below).

3.4.3.1. Directives and source lists
CSP defines several directives that define restricted content types:
• script-src restricts which scripts the protected resource can execute.

• object-src restricts from where the protected resource can load plugins.

• style-src restricts which styles the user applies to the protected resource.

• img-src restricts from where the protected resource can load images.

• media-src restricts from where the protected resource can load video and audio.

• frame-src restricts from where the protected resource can embed frames.

• font-src restricts from where the protected resource can load fonts.

• connect-src restricts which URIs the protected resource can load using script interfaces (like
XMLHttpRequest).

and additional directives that control behaviour of CSP:
• default-src sets a default source list for all directives except sandbox. If not set, directives that

are omitted permit all sources by default.

• sandbox is an optional directive that specifies an HTML sandbox policy that the user agent applies
to the protected resource.

• report-uri specifies a URI to which the user agent sends reports about policy violation.

Source list syntax is fairly flexible: source can be specified from scheme only (https:) and hostname
(example.com) to a fully qualified URI (https://example.com:443). Wildcards are also permitted

Chapter 3. Web Application Security

34

instead of scheme, port or as prefix of domain name to denote arbitrary subdomain (*.example.com).
Additionally, there are four keywords allowed in the source list:
• 'none' matches nothing.

• 'self' matches current origin.

• 'unsafe-inline' allows inline JavaScript and CSS and can be used with script-src and style-src
directives.

• 'unsafe-eval' allows eval-list mechanisms that convert text to executable script and can be used
with script-src directive.

Content-Security-Policy: default-src 'none'; script-src https://cdn.example.com 'self'
 'unsafe-inline'; connect-src https://api.example.com;

3.4.3.2. Reporting policy violations
Developers who are tuning CSP for their web applications or adopting CSP can use reporting
capabilities of CSP. By including report-uri directive server can instruct client's user agent to send
POST with JSON-formatted violation report to a specified URI.

Content-Security-Policy: ...; report-uri /csp_report_parser;

Reports sent back to server about CSP violation looks like this:

{
"csp-report": {
 "document-uri": "http://example.org/page.html",
 "referrer": "http://evil.example.com/haxor.html",
 "blocked-uri": "http://evil.example.com/image.png",
 "violated-directive": "default-src 'self'",
 "original-policy": "default-src 'self'; report-uri http://example.org/csp-report.cgi"
}
}

When deploying CSP it may be useful to test the policy in the wild before enforcing it. It is possible
to achieve this by sending Content-Security-Policy-Report-Only header instead - this will
indicate that the user agent must monitor any policy violations, but not enforce them. Combined with
report-uri this gives developers tools to seamlessly deploy new CSP policy.

Content-Security-Policy-Report-Only: ...; report-uri /csp_report_parser;

3.4.3.3. References
• W3C Content Security Policy 1.0: http://www.w3.org/TR/CSP/

• HTML5Rocks tutorial: http://www.html5rocks.com/en/tutorials/security/content-security-policy/

• GitHub blog on CSP: https://github.com/blog/1477-content-security-policy

http://www.w3.org/TR/CSP/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
https://github.com/blog/1477-content-security-policy

HTTP Strict Transport Security

35

3.4.4. HTTP Strict Transport Security
HTTP Strict Transport Security is a mechanism that allows server to inform client that any interactions
with the server shall be carried over secure HTTPS connection.

HTTPS provides a secure tunnel between client and the server, yet there are still ways through
which data can leak to the attacker. One of the most practical attacks on SSL is SSL stripping attack
introduced by Moxie Marlinspike, in which active network attacker transparently converts HTTPS
connection to insecure one. To the client it seems like web application does not support HTTPS and
has no means to verify whether this is the case.

HTTP Strict Transport Security mechanism allows server to inform client's user agent that the web
application shall be accessed only through secure HTTPS connection. When client`s UA conformant
with HSTS receives such notice from server, it enforces following behaviour:
• all references to HSTS host are converted into secure ones before dereferencing

• connection is terminated upon any and all secure transport errors or warnings without interaction
with user

User agents which receive response with HSTS header need to retain data about host enforcing strict
transport security for the timespan declared by the host. User agent builds a list of known HSTS hosts
and whenever request is sent to known HSTS host, HTTPS is used.

HSTS header sent by the server includes timespan during which UA should enforce strict transport
security in seconds:

Strict-Transport-Security: max-age=631138519

Optionally, server can also specify that HSTS be enforced on all subdomains:

Strict-Transport-Security: max-age=631138519; includeSubDomains

Setting timespan to zero

Strict-Transport-Security: max-age=0

allows the server to indicate that UA should delete HSTS policy associated with the host.

This header protects client from visiting host he has visited before using unsecure connection, but
when the client connects for the first time, he has no prior knowledge about HSTS policy for the host.
This theoretically allows attacker to successfully perform attack against user that connect for the first
time. To mitigate this, browsers include preloaded list of known HSTS hosts in the default installation.

3.4.4.1. Configuring HSTS in Rails
A single directive in Rail configuration

config.force_ssl = true

enables HSTS for the application.

3.4.4.2. References
• RFC 6797: http://tools.ietf.org/html/rfc6797

http://tools.ietf.org/html/rfc6797

Chapter 3. Web Application Security

36

• Mozilla - Preloading HSTS: https://blog.mozilla.org/security/2012/11/01/preloading-hsts/

• Chromium - list of preloaded known HSTS hosts: https://src.chromium.org/viewvc/chrome/trunk/src/
net/http/transport_security_state_static.json

3.4.5. X-XSS-Protection
Modern browsers usually come with built-in XSS filter, that is enabled by default. Originally IE 8
introduced new XSS filter and this header was created to give web application developers way to turn
this feature off in case it breaks functionality of the web application for users. Later this concept was
also adpoted by Webkit, which implements its own XSS filter.

XSS filter does not prevent XSS attacks by blocking malicious scripts, but rather tries to identify
untrusted scripts and transform them into benign strings. Heuristics that identify untrusted scripts
usually try to match scripts embedded within request to those included in response. If the script
matches, browser assumes the script included in the content is not trusted, as it is most probably not
part of the content of the application, but rather included as user-supplied parameter. This means XSS
filters are effective only against reflective XSS, not other variants.

Setting value of the header to 1 should re-enable XSS filter, in case it was disabled by user.

X-XSS-Protection: 1

Sanitization of scripts by converting them to benign strings has been source of bugs and security
vulnerabilities - sanitization in IE8 XSS filter has been found counterproductive as it actually introduced
XSS vulnerabilities in websites that were previously not vulnerable to XSS (including bing.com,
google.com, wikipedia.com and others. For details, see whitepaper by Eduardo Vela Nava and David
Lindsay Abusing Internet Explorer 8's XSS Filters3).

To remedy this, extension to the X-XSS-Protection header was introduced:

X-XSS-Protection: 1; mode=block

With mode set to block browser will outright block any script found untrusted instead of trying to
sanitize and display it.

3.4.5.1. References
• IE Internals: Controlling XSS Filter4

• IE Blog: The XSS Filter5

• Chromium Blog: Security in Depth: New Security Features6

3 http://p42.us/ie8xss/
4 http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-protection-http-
header.aspx
5 http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
6 http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html

https://blog.mozilla.org/security/2012/11/01/preloading-hsts/
https://src.chromium.org/viewvc/chrome/trunk/src/net/http/transport_security_state_static.json
https://src.chromium.org/viewvc/chrome/trunk/src/net/http/transport_security_state_static.json
http://p42.us/ie8xss/
http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-protection-http-header.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
http://p42.us/ie8xss/
http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-protection-http-header.aspx
http://blogs.msdn.com/b/ieinternals/archive/2011/01/31/controlling-the-internet-explorer-xss-filter-with-the-x-xss-protection-http-header.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html

X-Frame-Options

37

3.4.6. X-Frame-Options
X-Frame-Options header can be used by server to indicate that page returned shall not be rendered
inside <frame> and <iframe> tags and sites can use this as a defense from clickjacking attacks.

DENY
Content of the page shall not be displayed in a frame regardless of the origin of the page
attempting to do so.

SAMEORIGIN
Content of the page can be embedded only in a page with the same origin as the page itself.

ALLOW-FROM
Content of the page can be embedded only in a page with top level origin specified by this option.

The header returned from server allowing content to be embedded within https://example.com/ looks
like this

X-Frame-Options: ALLOW-FROM https://example.com/

3.4.6.1. References
• RFC 7034: http://tools.ietf.org/html/rfc7034

3.4.7. X-Content-Type-Options
To provide better compatibility modern browesers usually come with a content-type sniffing algorithm,
which allows them to infer content type of file by inspecting its content. This is useful in cases when
HTTP reponse does not include Content-Type header or if its mismatched. By correctly rendering the
content and ignoring mismatched MIME type browser gains competitive advantage over other browser
who do not render such file correctly.

Even though such behaviour enhances user experience, it also has impact on security. Suppose web
application allows users to upload and download content and to protect from malicious file types, it
implements content type filters that ban possibly dangerous file types. Attacker can upload malicious
file with benign Content-Type that will pass web applications filters and server will store the file
along with declared MIME type. When users download such file, server will include stored type in
Content-Type header. However, browser's content-type sniffing algorithm will determine the correct
type and ignore received Content-Type header, making the client vulnerable.

To prevent browsers from using content-type sniffing, server can include

X-Content-Type-Options: nosniff

header to enforce the type sent in Content-Type header.

3.4.7.1. References
• Internet Explorer Dev Center - Reducing MIME type security risks: http://msdn.microsoft.com/en-us/

library/ie/gg622941

http://tools.ietf.org/html/rfc7034
http://msdn.microsoft.com/en-us/library/ie/gg622941
http://msdn.microsoft.com/en-us/library/ie/gg622941

Chapter 3. Web Application Security

38

3.4.8. Configuring Rails
Enabling security related headers in Rails application is simplified by SecureHeaders7 gem. After
installation, it automatically adds:
• Content Security Policy

• HTTP Strict Transport Security

• X-Frame-Options

• X-XSS-Protection

• X-Content-Type-Options

After adding the gem to project's Gemfile

gem 'secure_headers'

enable its functionality by adding ensure_security_headers directive to ApplicationController:

class ApplicationController < ActionController::Base
 ensure_security_headers
end

Configuration of the header values can be done by creating an initializer and overriding default gem
configuration:

::SecureHeaders::Configuration.configure do |config|
config.hsts = {:max_age => 20.years.to_i, :include_subdomains => true}
config.x_frame_options = 'DENY'
config.x_content_type_options = "nosniff"
config.x_xss_protection = {:value => 1, :mode => 'block'}
config.csp = {
 :enforce => true,
 :default_src => "https://* self",
 :frame_src => "https://* http://*.twimg.com http://itunes.apple.com",
 :img_src => "https://*",
 :report_uri => '//example.com/uri-directive'
}
end

It is important to set :enforce to true in CSP configuration, because SecureHeaders defaults to
false, which indicates Content-Security-Policy-Report-Only header will be sent and the policy will not
be enforced, only monitored (see Section 3.4.3, “Content Security Policy (CSP)”). SecureHeaders
will also set value of :default_src to all empty directives explicitly and not rely on the user agent's
behaviour.

3.4.9. Guidelines and recommendations
Following are general recommendations based on previous sections regarding client side security:

7 https://github.com/twitter/secureheaders

https://github.com/twitter/secureheaders
https://github.com/twitter/secureheaders

Application and server configuration and hardening

39

Avoid JSONP pattern for cross-origin resource sharing
JSONP pattern emerged as a workaround of Same Origin Policy in case web application needs
to share resources across domains. Such approach creates a big attack surface and JSONP
hijacking is dangerous even for application that don't use JSONP pattern, but return JavaScript
content on GET requests (see Section 3.4.2.2, “JSON with padding (JSONP)”).

Use SSL for all connections and use HSTS to enforce it
Using non-SSL connection is a serious weakness of web application with regards to network
attackers. Enforcing SSL connection by redirection is often insufficient too, and it is desirable to
add HSTS header to SSL enabled web applications (see Section 3.4.4, “HTTP Strict Transport
Security”).

Use Content Security Policy
Content Security Policy is quickly becoming standardized and provides a robust solution against
XSS attacks and untrusted content loaded in the context of web page in general. Adopting it
requires a web application to be compliant and enforces already accepted good practices with
regards to script inlining (see Section 3.4.3, “Content Security Policy (CSP)”).

Use experimental security related headers for additional hardening
Several non-standard HTTP headers that control implementation-specific behaviour of some user
agents can be used to provide additional hardening of web application. These include X-Frame-
Options, X-XSS-Protection and X-Content-Type-Options (see Section 3.4.7, “X-
Content-Type-Options”). In case of CSP X-WebKit-CSP and X-Content-Security-Policy
can be used to provide better compatibility with older Mozilla and WebKit-based browsers (see
Section 3.4.3, “Content Security Policy (CSP)”).

3.5. Application and server configuration and hardening

3.5.1. Logging

3.5.2. User content storage

3.5.3. Storing passwords securely

40

41

Appendix A. Revision History
Revision 1-1 Tue Feb 18 2014 Ján Rusnačko jrusnack@redhat.com

Initial creation of book

mailto:jrusnack@redhat.com

42

43

Index

44

	Secure Ruby Development Guide
	Table of Contents
	Chapter 1. Environment
	1.1. Code quality metrics
	1.2. Dependency management
	1.2.1. Outdated Dependencies
	1.2.2. Vendoring dependencies
	1.2.3. Gem signing
	1.2.3.1. Installation and policies
	1.2.3.2. References:

	1.3. Static code analysis with Brakeman
	1.3.1. Continuous integration
	1.3.2. Reducing number of false warnings

	Chapter 2. Language features
	2.1. Tainting and restricted code execution
	2.1.1. Object.tainted?
	2.1.2. Object.untrusted?
	2.1.3. $SAFE
	2.1.3.1. Security considerations of $SAFE

	2.2. Dangerous methods
	2.3. Symbols
	2.4. Serialization in Ruby
	2.4.1. Marshal.load
	2.4.2. YAML.load
	2.4.2.1. SafeYAML

	2.4.3. JSON.parse and JSON.load
	2.4.4. Exploiting deserialization vulnerabilities
	2.4.4.1. References

	2.5. Regular expressions
	2.6. Object.send
	2.7. SSL in Ruby
	2.7.1. Certificate store
	2.7.2. Ruby libraries using OpenSSL
	2.7.2.1. Behaviour in different Ruby versions

	Chapter 3. Web Application Security
	3.1. Authentication and session management
	3.2. Authorization and user management
	3.3. Common attacks and mitigations
	3.3.1. Cross site scripting (XSS)
	3.3.2. Cross site request forgery (CSRF)
	3.3.2.1. Synchronizer token pattern
	3.3.2.2. Double submit cookie pattern
	3.3.2.3. Encrypted token pattern
	3.3.2.4. Checking Referer header
	3.3.2.5. References

	3.3.3. Command injection
	3.3.3.1. SQL injection
	3.3.3.1.1. (Un)safe Active Record queries

	3.3.3.2. OS command injection
	3.3.3.3. References

	3.3.4. Cross site tracing (XST)
	3.3.5. Guidelines and principles

	3.4. Client-side security
	3.4.1. Same origin policy
	3.4.1.1. Setting document.domain
	3.4.1.2. Unrestricted operations
	3.4.1.3. Additional resources

	3.4.2. Bypassing same origin policy
	3.4.2.1. Cross-origin resource sharing (CORS)
	3.4.2.1.1. Using CORS in Rack-based applications

	3.4.2.2. JSON with padding (JSONP)
	3.4.2.3. Additional resources

	3.4.3. Content Security Policy (CSP)
	3.4.3.1. Directives and source lists
	3.4.3.2. Reporting policy violations
	3.4.3.3. References

	3.4.4. HTTP Strict Transport Security
	3.4.4.1. Configuring HSTS in Rails
	3.4.4.2. References

	3.4.5. X-XSS-Protection
	3.4.5.1. References

	3.4.6. X-Frame-Options
	3.4.6.1. References

	3.4.7. X-Content-Type-Options
	3.4.7.1. References

	3.4.8. Configuring Rails
	3.4.9. Guidelines and recommendations

	3.5. Application and server configuration and hardening
	3.5.1. Logging
	3.5.2. User content storage
	3.5.3. Storing passwords securely

	Appendix A. Revision History
	Index

