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Abstract

In functional programming it is common practice to build modular programs
by composing functions where the intermediate values are data structures
such as lists or arrays. A desirable optimisation for programs written in this
style is to fuse the composed functions and thereby eliminate the intermediate
data structures and their associated runtime costs.

Stream fusion is one such fusion optimisation that can eliminate intermediate
data structures, including lists, arrays and other abstract data types that can
be viewed as coinductive sequences. The fusion transformation can be applied
fully automatically by a general purpose optimising compiler. The stream
fusion technique itself has been presented previously and many practical
implementations exist. The primary contributions of this thesis address the
issues of correctness and optimisation: whether the transformation is correct
and whether the transformation is an optimisation.

Proofs of shortcut fusion laws have typically relied on parametricity by making
use of free theorems. Unfortunately, most functional programming languages
have semantics for which classical free theorems do not hold unconditionally;
additional side conditions are required. In this thesis we take an approach
based not on parametricity but on data abstraction. Using this approach
we prove the correctness of stream fusion for lists – encompassing the fusion
system as a whole, not merely the central fusion law. We generalise this
proof to give a framework for proving the correctness of stream fusion for any
abstract data type that can be viewed as a coinductive sequence and give
as an instance of the framework, a simple model of arrays. The framework
requires that each fusible function satisfies a simple data abstraction property.
We give proofs of this property for several standard list functions.

Previous empirical work has demonstrated that stream fusion can be an
optimisation in many cases. In this thesis we take a more universal view and
consider the issue of optimisation independently of any particular implemen-
tation or compiler. We make a semi-formal argument that, subject to certain
syntactic conditions on fusible functions, stream fusion on lists is strictly an
improvement, as measured by the number of allocations of data constructors.
This detailed analysis of how stream fusion works may be of use in writing
fusible functions or in developing new implementations of stream fusion.
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Chapter 1

Introduction

1.1 Aims

This thesis is about a technique for making beautiful programs run fast.

Programmers and computer scientists like beautiful programs. We also like fast programs.
These qualities are often in conflict in the design of programs and we are often forced to
sacrifice one to achieve the other.

For decades computer scientists have looked for techniques to make real progress in
this tradeoff. One popular approach has been to derive fast programs from beautiful
programs. This has sometimes taken the form of calculation methods performed by hand.
Wherever possible people have tried to design automated methods, often with a view to
include them as optimisation passes in a compiler.

This thesis is a contribution to the work on deriving fast programs from beautiful
programs. It is, of course, not a contribution of universal applicability to all programs
in all programming languages. It is about a particular automated technique – stream
fusion – that works for a particular class of programs in a particular class of programming
languages.

Specifically, the technique applies in the context of functional programming languages.
It applies to programs where a sequence data structure is produced as the result of one
function and consumed immediately by another function. Its application is restricted by
the condition that the producing and consuming functions be written in terms of special
named combinators. Where the technique applies, it transforms the composition of the
producing and consuming functions into a single fused function. This fused function
performs fewer memory allocations at runtime and as a consequence usually runs faster.

By way of example, consider the following small program in the functional programming
language Haskell (Peyton Jones et al., 2003), which calculates the sum of the squares of
a list of numbers

sumSq xs = sum (map sq xs)
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It uses the following auxiliary definitions1

sum [ ] = 0
sum (x : xs) = x + sum xs

map f [ ] = [ ]
map f (x : xs) = f x :map f xs

sq x = x × x

This style of programming, using lazy lists as the glue to connect reusable functions,
is widely regarded as powerful and elegant2. It is undeniable however that using many
intermediate lists slows down the execution of a program. During the course of evaluating,
say sumSq [2], we will construct the intermediate list [sq 2] before summing the result.
This is unfortunate since we can write a direct definition of sumSq that avoids constructing
any intermediate list and thus executes faster and uses less memory

sumSq [ ] = 0
sumSq (x : xs) = x × x + sumSq xs

On the other hand, this version sacrifices the clarity and modularity of the original. What
we really want is to write the first version and have the compiler automatically derive
the second version.

Using the stream fusion technique we can achieve exactly that. If we redefine the standard
list functions map, sum et cetera in terms of the special stream fusion combinators then
we can automatically transform the original beautiful program into the equivalent fast
program.

1.2 Synopsis

This thesis makes two main claims.

1. Stream fusion is a correct program transformation.

2. Stream fusion is an optimisation. Specifically the claim is that in programs
where stream fusion applies, the transformed program performs strictly fewer data
constructor allocations during evaluation than does the original program.

Chapters 3 and 4 are dedicated to substantiating these claims and they form the nub of
the thesis.

1The astute reader will notice that the given definition of sum does not make use of an accumulating
parameter. We use this definition because it simplifies the initial presentation. A definition using
an accumulating parameter poses no problem for stream fusion, though it does for one of the other
techniques that we will consider in this chapter.

2Hughes (1989) presents the arguments for this style.
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The rest of this thesis is organised as follows:

• The remainder of this chapter provides some context by introducing existing related
fusion techniques. It goes on to introduce stream fusion and to show where it fits
relative to the existing techniques.

• Chapter 2 covers some technical preliminaries which are assumed in later chap-
ters. Readers familiar with Haskell and the semantics of functional languages (in
particular the semantics of recursively defined data types) may prefer to skip this
chapter.

• Chapter 3 looks at why we should believe stream fusion to be correct.

• Chapter 4 looks at why we expect stream fusion to be an optimisation.

• Chapter 5 compares stream fusion to other related work, though the most closely
related work is covered in the current chapter.

• Chapter 6 concludes and considers further work.

Parts of the research presented here have been reported on in previous papers (Coutts
et al., 2007a,b). These papers need not be considered as prerequisites however. While
we do make occasional reference to related material in these papers, the directly relevant
material is covered in this chapter.

Much of the early research on stream fusion was conducted using the ByteString library.
The details of the ByteString implementation are available as a separate technical report
(Coutts, 2010).

1.3 Research context

Stream fusion is not unique in its ability to perform the optimisation we have seen on
the sumSq example. There are other techniques, including ones we label as ‘fusion’ or
‘shortcut fusion’, that can achieve the same result. The differences between the various
techniques lie in the range of programs to which they apply, how effective they are in the
cases where they do apply and whether or not they can be automated.

To understand why stream fusion is an interesting fusion technique it helps to put it in
the context of previous research. The following sections are not a comprehensive look at
related work, but an introduction to a selection of previous work that has directly or
indirectly motivated our own. It should help to explain how we got to the starting point
for this research and why we headed in the direction we did.

In looking back at the previous research we will notice that the trend has been of
increasing automation and decreasing generality. The early techniques are applicable to a
wide range of programs but are primarily manual and have some tricky side-conditions to
verify. The later techniques have simple side-conditions and can be automated; however,
they apply only to programs in particular special forms. The research described in this
thesis is no exception to the trend.
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1.3.1 The unfold / fold framework

A significant early paper by Burstall and Darlington (1977) describes a calculation method
to transform “lucid” programs into more efficient ones. It works on programs written as
recursive equations – what we would now describe as a functional style. An interesting
point made in this paper is that the functional style is better suited to transformation
than the “usual Algol” or imperative style. The rest of the works we will consider
(including this thesis) are concerned with programs written in a functional style.

The Burstall and Darlington paper describes a system of transformation rules, each
of which preserves the meaning of a program. By cunning application of the rules, a
programmer may transform a lucid program into a faster one. Indeed it can improve
the asymptotic complexity and not just the constant factors. It is a calculation method
and not an automatic algorithm. The decisions about which rules to apply (and when to
apply them) are up to the programmer, though there are strategies that produce good
results in many cases.

It is commonly referred to as the ‘fold-unfold’ transformation technique. In this context
‘unfolding’ means substituting named parametrised terms for their definitions while
‘folding’ is the reverse transformation of substituting an instance of a definition for the
named term3. The essence of the ‘fold-unfold’ method is as follows. It starts by unfolding
and simplifying the original recursive definitions. The crucial step is to look in the
resulting terms for instances of the original definitions and to fold those instances back
into new recursive definitions.

The Fibonacci example

They use the Fibonacci function as an example. We will look at this example because it
illustrates the distinguishing features of their technique. In particular, with this example,
the technique is able to achieve an improvement in the asymptotic complexity. However,
because the subsequent techniques that we will consider cannot change the asymptotic
complexity, we will also look at a second example that is somewhat simpler.

We start with the original recursive definition, written as a set of equations. Under a
standard evaluation model, f n will take Ω(2n) time to evaluate.

f 0 = 0
f 1 = 1
f (n + 2) = f (n + 1) + f n

We then have a “eureka” step, where we invent an auxiliary definition based on our
original definition.

g n = (f (n + 1), f n)

We instantiate this auxiliary definition for the 0 and (n + 1) cases, each time unfolding
calls to f wherever possible

3The use of the terms fold and unfold in this context should not be confused with the common
functions fold and unfold .
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g 0 = (f 1, f 0)
= (1, 0)

g (n + 1) = (f (n + 2), f (n + 1))
= (f (n + 1) + f n, f (n + 1))

Then we have another tricky step. We abstract over f (n + 1) and f n, replacing them
with variables u and v . We notice we have an instance of a call to g and we fold it back
into an actual application of g .

g (n + 1) = (u + v , u) where (u, v) = (f (n + 1), f n)
= (u + v , u) where (u, v) = g n

We do something similar for f (n + 2), abstracting over f (n + 1) and f n, replacing
them with variables u and v and then folding into an application of g .

f (n + 2) = u + v where (u, v) = (f (n + 1), f n)
= u + v where (u, v) = g n

Our final equations are

f 0 = 0
f 1 = 1
f (n + 2) = u + v where (u, v) = g n

g 0 = (1, 0)
g (n + 1) = (u + v , u) where (u, v) = g n

We now have a different pattern of recursion and have improved the running time from
exponential to linear – a dramatic improvement. All the later techniques we will consider
can only make constant factor improvements to the running time or space use. This
example also illustrates that there are several points in the derivation that are not just
mechanical unfolding and substitution. We have to invent suitable auxiliary definitions
and must also choose what to abstract over.

This kind of exercise is great for exam questions but is less useful for real programming.
Burstall and Darlington provide a strategy for applying the rules and they implemented a
system that performs many of the steps automatically, including the unfolding, abstraction
and folding steps. The algorithm still requires any auxiliary definitions, such as g in the
Fibonacci example, to be supplied as input.

A further issue is that, applied blindly, the technique does not necessarily preserve
termination. For example as a final step in the Fibonacci example we could make use of
the fact that g n = (f (n + 1), f n) and thus f n = snd (g n) to get a somewhat shorter
result

f n = snd (g n)

g 0 = (1, 0)
g (n + 1) = (u + v , u) where (u, v) = g n
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However if we were to have applied the fact f n = snd (g n) at an earlier stage of the
derivation we could have ended up with

f n = snd (g n)

g n = (f (n + 1), f n)

This is tantamount to stating that f n = f n which is a true statement but is less than
helpful. It is only helpful to redefine f once we have manipulated g to the point where it
is defined in terms of itself rather than in terms of f .

The sumSq example

To make fair comparisons with the techniques we will consider next, we must turn to
a simpler example that does not involve asymptotic improvements. We return to the
introductory example of optimising a function that calculates the sum of the squares of
a list of numbers. We start with the “lucid” definitions:

sumSq xs = sum (map sq xs)

sum [ ] = 0
sum (x : xs) = x + sum xs

map f [ ] = [ ]
map f (x : xs) = f x :map f xs

sq x = x × x

To apply the method of Burstall and Darlington in the sumSq example we do not need
to invent any auxiliary definitions. We can instantiate sumSq in the [ ] and (x : xs) cases
and then get straight on with unfolding definitions.

sumSq [ ] = sum (map sq [ ])
= sum [ ]
= 0

sumSq (x : xs) = sum (map sq (x : xs))
= sum (sq x :map sq xs)
= sq x + sum (map sq xs)
= x × x + sum (map sq xs)

In the (x : xs) case we spot a simple instance of sumSq which we can fold back into a call.

= x × x + sumSq xs

So we arrive at our final definition:

sumSq [ ] = 0
sumSq (x : xs) = x × x + sumSq xs

With this simpler example the improvements are much less dramatic than in the Fibonacci
example but we did not need any imagination, the whole thing was essentially mechanical.
The question arising out of these examples is: can we characterise precisely the subset of
definitions that we can optimise mechanically; that is, without needing a “eureka” step.



CHAPTER 1. INTRODUCTION 7

Much research subsequent to that of Burstall and Darlington went into finding restrictions
or improvements to enable a fully automatic algorithm. As in the sumSq example, an
important special case is that of removing intermediate data structures in compositions of
functions. There is a line of research taking this approach. The goal remains to generate
fast programs from elegant programs, but for the common special case of expressions
of the form f (g x ) where the intermediate type is a complicated data structure. In
a whole program there may be many instances of this form. This is true especially in
programming styles that emphasise building programs by composing simpler re-usable
functions.

1.3.2 Wadler’s deforestation algorithm

Wadler (1990b) proposed an algorithm to deal automatically with a further special case:
compositions of functions that produce and consume trees that are themselves defined in
a special form called “treeless form”. The algorithm guarantees that if both functions
are in treeless form then the resulting function will also be in treeless form. Furthermore
it guarantees that the number of allocations cannot increase. The intention of course is
that the number of allocations actually decrease and indeed in many examples they do
decrease.

The main drawback of Wadler’s deforestation algorithm is the limited class of programs to
which it applies. The treeless form is first order, it requires that variables be used linearly
and requires that there be no other intermediate data structures. Näıve generalisations
of the algorithm lead to non-termination in certain cases by performing infinite sequences
of unfoldings. Wadler suggests several generalisations. One lifts the linearity restriction
at least for atomic non-tree types by introducing let bindings. He also suggests handling
higher order functions by “macro expansion” into first order programs. This idea was
extended by Marlow and Wadler (1993).

1.3.3 Shortcut fusion

The deforestation algorithm did not appear to be particularly successful in practice. It
has not been included in a release of any compiler, though a prototype was implemented
(Davis, 1987) in the LML compiler. One approach to obtaining a more practical algorithm
was to take yet another special case. Instead of considering general recursive definitions,
the idea is to only attempt to improve definitions written in terms of particular designated
functions – fusion combinators. This approach is named shortcut deforestation or shortcut
fusion. Shortcut fusion has primarily been applied to eliminate lists as intermediate data
structures, though approaches exist to tackle trees and arrays.

The key idea of shortcut fusion is that we use equations involving the fusion combinators
as local rewrite rules. When we compose functions that are written in terms of the fusion
combinators it becomes possible to rewrite the composition to a fused function which
does not use any intermediate data structure.

Different shortcut fusion systems use different fusion combinators and associated equations
as rewrite rules. We can compare shortcut fusion systems by the range of functions
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that may be expressed in terms of their fusion combinators and also the quality of the
optimisation when the fusion rules apply.

As an example, let us invent a trivial and inexpressive fusion system that we will call
‘map/map’. It uses a single fusion combinator map and employs the following equation
as a local rewrite rule

Fusion rule (map/map).

∀f g . map f ◦map g = map (f ◦ g)

We can apply this system by looking in a source program and wherever we find instances
of the rule’s left hand side we replace them with the right hand side. This works as an
algorithm because the equation is correct and provided that we only use the equation as
a rewrite rule in a left to right direction then as a rewrite system it is terminating. What
is more, it is an optimisation: we can see that when the rule does apply it does remove
intermediate allocations.

Generalising from the ‘map/map’ example, our obligations as designers of shortcut fusion
systems are these:

• we must prove that the equations we use are correct;

• we must show that when the equations are used as rewrite rules, that the rewrite
system is terminating;

• we should show that the system is an optimisation.

Showing that the rewrite system is terminating is usually straightforward because in
most systems the number of occurrences of some combinator decreases with each rule
application.

The fact that the shortcut fusion approach only uses local transformations is a key
advantage in comparison to the more general deforestation algorithm. Assuming we can
prove the equations we use, then total correctness of the shortcut fusion algorithm is
fairly straightforward and does not involve any restrictive side conditions on the form of
definitions.

Using local transformations also makes it relatively easy to integrate into the optimisation
phase of a compiler. The first shortcut fusion system by Gill et al. (1993) was implemented
directly in the Glasgow Haskell Compiler (GHC Team, 2010). A later development by
Peyton Jones et al. (2001) was the introduction of a rules language to allow such rewrite
rules to be written in a source module and then applied automatically during compilation.
This innovation greatly helped later research into similar fusion approaches by making it
easy to try experiments. In the concrete syntax of the GHC rules language, the map/map
rule is written as

{-# RULES "map/map" forall f g. map f . map g = map (f . g) #-}
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Since each equation that is used as a local transformation rule must be proved, we wish
to minimise the number of such rules while at the same time maximising the number of
functions that we can express in terms of the fusion combinators.

Näıve generalisations of the map/map system, e.g. taking in filter et cetera, lead to a
quadratic explosion in the number of equations required. It is crucial to the design of
a shortcut fusion system to find a small set of combinators which are able to express a
large class of functions. Intuitively, these combinators should capture the patterns used
to construct, consume or transform the intermediate data structures of interest.

1.3.4 Ad hoc shortcut fusion

A somewhat scalable approach is to take a collection of functions of interest and find
a smaller set of more general functions that can express them. Continuing the trivial
map/map example, if we just added filter as a combinator then we would need equations
for all four pairings4 of map and filter . If on the other hand we define a function
mapFilter that is capable of expressing both then we would need only one equation of
the form

Fusion rule (mapFilter/mapFilter).

∀f g p q . mapFilter f p ◦mapFilter g q = mapFilter (f ◦ g) (λx → q x ∧ p (g x ))

There is quite a wide scope for fusion systems of this sort. The choice of fusion combinators
is inevitably rather ad hoc, chosen to cover a particular range of functions. There is also
the danger of excessive complexity caused by trying to find unnatural generalisations of
several basis functions. While there is no great theoretical elegance to such systems it is
quite possible to build practical implementations that cover a useful range of functions.

1.3.5 Functional array fusion

An enlightening example system of this sort is functional array fusion developed by
Chakravarty and Keller (2001, 2003). As the name suggests this system was designed
specifically for array code. The choice of fusion combinators is driven by the typical
range of array operations and array access patterns. The primary fusion combinator loop
is essentially the generalisation of filter , scanl and foldl on arrays. The loop combinator
captures left-to-right array traversals:

loop :: (a → s → (Maybe a, s))→ s → Array a → (Array a, s)

The result of a traversal depends on the supplied ‘stepper’ function which, given a state
and an array element, produces a new state and, optionally, a new element. Note that
loop transforms an array into another array and thus a second combinator is required to

4We would also need an extra function like mapFilter to express the result since the composition of
a map and a filter is neither a map nor a filter .
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construct any initial array. The replicate combinator constructs an array consisting of n
copies of a given element value

replicate :: Int → a → Array a

The system uses two equations as fusion rules, a main one that relates loop with itself
and one that relates loop with replicate.

Fusion rule (loop/loop). The main fusion rule combines adjacent loops by suitably
composing the stepper functions

∀f s g t . loop g t ◦ fst ◦ loop f s = loopSndAcc ◦ loop (fuseStep f g) (s , t)

The auxiliary function loopSndAcc just selects out the appropriate components of the
result

loopSndAcc (xs , (s , t)) = (xs , t)

while fuseStep lifts a pair of stepper functions into a stepper function on pairs

fuseStep f g x (a, b) =
case f x a of
(Nothing , a ′)→ (Nothing , (a ′, b))
(Just x ′, a ′)→ case g x ′ b of

(Nothing , b ′)→ (Nothing , (a ′, b ′))
(Just x ′′, b ′)→ (Just x ′′, (a ′, b ′))

The sumSq example

Let us look at the sumSq example in this system. Of course this time we have to interpret
it over arrays rather than over lists

sumSq :: Array Int → Int
sumSq xs = sum (map sq xs)

We also must define map and sum in terms of the fusion combinator loop

map f = fst ◦ loop (stepMap f ) ()
sum = snd ◦ loop stepSum 0

stepMap f x () = (Just (f x ), ())
stepSum x a = (Nothing , x + a)

Now we can unfold and apply the fusion rule

sum (map sq xs)

= { unfold the definitions of sum and map }
snd (loop stepSum 0 (fst (loop (stepMap sq) () xs)))

= { apply loop/loop rule }
snd (loopSndAcc (loop (fuseStep (stepMap sq) stepSum) ((), 0) xs))
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We are left with a single loop, albeit one with a somewhat complex state and stepper
function. The combined stepper function can be simplified:

fuseStep (stepMap sq) stepSum x (a, b)

= { unfold the definition of fuseStep }
case stepMap sq x a of
(Nothing , a ′)→ (Nothing , (a ′, b))
(Just x ′, a ′)→ case stepSum b x ′ of

(Nothing , b ′)→ (Nothing , (a ′, b ′))
(Just x ′′, b ′)→ (Just x ′′, (a ′, b ′))

= { unfold definitions of stepMap and stepSum }
case (Just (sq x ), ()) of
(Nothing , a ′)→ (Nothing , (a ′, b))
(Just x ′, a ′)→ case (Nothing , x ′ + b) of

(Nothing , b ′)→ (Nothing , (a ′, b ′))
(Just x ′′, b ′)→ (Just x ′′, (a ′, b ′))

= { case reduction }
(Nothing , ((), sq x + b))

So while we have certainly eliminated the allocation of an intermediate array, the final
code is not simple. In particular the fused stepper function has quite a bit of redundant
code. All it is doing is accumulating a value over the array yet it has to produce a
Nothing and a () at each step. It is a tall order to expect the compiler to completely
eliminate all of this. Indeed, it is clear that current compilers cannot do so (See Coutts
et al., 2007a, Section 5).

This system works well enough for standard array algorithms such as map, filter , foldl
and scanl . It can be extended to support operations that process arrays from right to
left. The system can be further extended to handle operations that consume multiple
arrays by adding an additional fusion combinator zip and rules relating it to loop and
replicate. A real limitation however is that the array transformer loop can never produce
an array that is longer than its input array; this makes it impossible to express functions
such as concatMap.

1.3.6 Natural shortcut fusion

The next two systems we will consider are foldr/build fusion and unbuild/unfoldr fusion.
These systems are the primary reference points for the work on stream fusion and we
will make frequent comparisons to them in the remaining chapters.

Unlike functional array fusion they both occupy natural points in the design space for
shortcut fusion. In their simplest formulation both system use just two fusion combinators
and a single equation as a fusion rule. What makes them natural is that instead of an ad
hoc choice of fusion combinators they use combinators which are based on the recursive
structure of data itself. There are two standard ways of constructing recursive data types,
called data and the co-data, and correspondingly there are two natural shortcut fusion
systems.
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1.3.7 The foldr/build fusion system

The first shortcut fusion system, indeed the one for which the term was coined, is the
foldr/build system (Gill et al., 1993; Gill, 1996). As the name suggests it is based on the
fusion combinators foldr and build :

foldr :: (a → b → b)→ b → [a ]→ b

build :: (∀b.(a → b → b)→ b → b)→ [a ]

The foldr function is familiar to all functional programmers as

foldr f z [ ] = z
foldr f z (x : xs) = f x (foldr f z xs)

It embodies a general pattern of recursion on lists. It can express a huge range of common
functions on lists including

sum = foldr (+) 0
xs ++ ys = foldr (:) ys xs

map f = foldr (λx xs → f x : xs) [ ]
filter p = foldr (λx xs → if p x then x : xs else xs) [ ]

foldl f v xs = foldr (λx g → (λa → g (f a x ))) id xs v
dropWhile p = fst ◦ foldr f ([ ], [ ])
where
f x (ys , xs) = (if p x then ys else x : xs , x : xs)

Hutton (1999) covers these and other examples. The last two are particularly interesting
and somewhat surprising. They show how using higher order or pair types can extend
the expressiveness beyond the simple recursive patterns that people typically associate
with foldr .

The function build is not common and its purpose is less immediately obvious

build :: (∀b.(a → b → b)→ b → b)→ [a ]
build g = g (:) [ ]

While foldr is for consuming lists, build can be used to construct them. For example the
list [1, 2, 3] can be written as

build l
where
l :: ∀b. (Int → b → b)→ b → b
l cons nil = 1 ‘cons ‘ (2 ‘cons ‘ (3 ‘cons ‘ nil))

The application of build to the function l gives us the list we first thought of by substituting
(:) in place of cons and [ ] in place of nil . While we may be familiar with using foldr to
write list consumers, this trick with build is certainly not a common way to write lists
producers.
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Fusion rule (foldr/build). The key equation of the foldr/build system is

∀f g z . foldr f z (build g) = g f z

On the left hand side, we have build producing a list and foldr immediately consuming
it. The right hand side does not mention lists at all. Thus if we can express our list
functions in terms of foldr and build then we can use this equation as a local rewrite rule
to eliminate intermediate lists.

The sumSq example

Let us see the system in action with the sumSq example:

sumSq xs = sum (map sq xs)

sq x = x × x

We require that the functions map and sum are rewritten in terms of foldr and build .

sum = foldr (+) 0

map f = foldr (λx xs → f x : xs) [ ]

Note that with this definition of map, the result list is built explicitly using (:). However,
for us to apply the foldr/build rule to sum (map sq xs), the map function must be
defined in terms of build . The derivation is straightforward.

map f xs

= { instance of foldr }
foldr (λx ys → f x : ys) [ ] xs

= { abstract over (:) and [ ] }
(λcons nil → foldr (λx ys → f x ‘cons ‘ ys) nil xs) (:) [ ]

= { instance of build }
build (λcons nil → foldr (λx ys → f x ‘cons ‘ ys) nil xs)

We can now try to optimise our sumSq definition. The technique is to use standard
transformations guided by heuristics and whenever the fusion rule can be applied we do
so.

sumSq xs

= { unfold the definition of sumSq }
sum (map sq xs)

= { unfold the definition of sum }
foldr (+) 0 (map sq xs)

= { unfold the definition of map }
foldr (+) 0 (build (λc n → foldr (λx ys → sq x ‘c‘ ys) n xs))

= { foldr/build fusion rule }
(λc n → foldr (λx ys → sq x ‘c‘ ys) n xs) (+) 0

= { β-reduce }
foldr (λx ys → sq x + ys) 0 xs
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If we now split on the two possible cases of xs we get the final definition. In the [ ] case

sumSq [ ]
= { above derivation }

foldr (λx ys → sq x + ys) 0 [ ]
= { unfold the definition of foldr for case [ ] }

0

And in the (x : xs) case

sumSq (x : xs)
= { above derivation }

foldr (λx ys → sq x + ys) 0 (x : xs)
= { unfold the definition of foldr for case (:) }

(λx ys → sq x + ys) x (sumSq xs)
= { β-reduce }

sq x + sumSq xs
= { unfold the definition of sq }

x × x + sumSq xs

Thus the final definition is

sumSq [ ] = 0
sumSq (x : xs) = x × x + sumSq xs

Note that there are no lists constructed in this final version. Note also that we have
arrived at the same final code as we obtained using the Burstall and Darlington method.

Automation

We have done this sequence of transformations by hand, but it can also be performed
automatically by the optimisation phase of a compiler (albeit in more ponderous detail
and not necessarily in the same order). The following is the full source module for the
sumSq example ready to feed to the GHC optimiser.

module SumSq (sumSq) where
import Prelude hiding (map, sum)
import GHC .Exts (build)

map f xs = build (λcons nil → foldr (λx ys → f x ‘cons ‘ ys) nil xs)
sum xs = foldr (+) 0 xs
sq x = x × x

sumSq :: [Int ]→ Int
sumSq xs = sum (map sq xs)

In the version of GHC which we are using5, the functions foldr and build and the
foldr/build rule are defined in one of the core modules. If we were to give the rule
ourselves we would write it as follows

{-# RULES "foldr/build"

forall f z g. foldr f z (build g) = g f z #-}

5GHC version 6.12
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The following shows the transformed core code (edited for clarity).

go :: [Int ]→ Int#
go = λxs → case xs of

[ ] → 0
x : xs ′ → case x of

I# x# → case go xs ′ of
s# → (x# ×# x#) +# s#

sumSq :: [Int ]→ Int
sumSq = inline me (λxs → case go xs of s → I# s)

Looking at the output code we see that, modulo the use of unboxed primitives6, the code
is essentially the same as the result we obtained manually. In particular the intermediate
list between sum and map has been eliminated. The optimiser has applied the foldr/build
rule once, as we did manually, along with unfolding, β-reduction and numerous other
simplifications according to its standard heuristics.

Range of fusible functions

The foldr/build fusion system is remarkably effective. In particular it works well for list
comprehensions. By translating list comprehensions into uses of build and foldr , the
foldr/build fusion system can eliminate all the lists that are internal to the comprehension
itself. Furthermore each of the list generators are consumed with a foldr which gives the
potential to fuse with them. There is also the possibility to fuse with an overall consumer
because the overall list is built using build .

Unfortunately, not all list consumers can be written effectively in terms of foldr . In
particular foldl and zip are problematic. While we saw earlier that foldl can be written in
terms of foldr and can thereby be fused, the way it is written uses higher order functions
and so does the resulting fused code. With standard compilation schemes this fused
code is extremely inefficient. Gill (1996, Section 3.2.3, 4.4) proposes an arity-raising
transformation that would turn the higher order foldl into the standard recursion with
an accumulating parameter. At the time of writing however, the optimisation has not
been implemented in any major compiler.

The sumSq example demonstrates the problem with accumulating parameters. We had
to define sum as a foldr when it is almost always more efficient to define it as a foldl .
Indeed, looking again at the core code above we see that the worker function is not tail
recursive – it uses linear stack space. If however we do define sum in the standard way
as a foldl then, while it fuses, it runs slower.

We must watch out for this issue when evaluating fusion systems. While the fusion
transformation itself may be an improvement, if we have to write functions in a highly
non-standard way then we may simply be shuffling allocations from one place to another.
In the worst case it is even possible that the overall result may be worse than the original
simple unfused version.

6The #-suffix naming convention is used to indicate unboxed primitive machine types.
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The zip function is a problem in the foldr/build system because it cannot be written so
as to consume both input lists with a foldr . It can produce the result list using build
and can be written to consume one input list or the other using foldr , but not both
simultaneously.

1.3.8 The unbuild/unfoldr fusion system

One approach to addressing the challenge of left folds and zips was proposed by Sven-
ningsson (2002). It is another shortcut fusion system, using the fusion combinators
unfoldr and unbuild7

unfoldr :: (s → Maybe (a, s))→ s → [a ]

unbuild :: (∀s . (s → Maybe (a, s))→ s → b)→ [a ]→ b

Most functional programmers are at least vaguely aware of unfoldr

unfoldr :: (s → Maybe (a, s))→ s → [a ]
unfoldr next s = case next s of

Nothing → [ ]
Just (x , s ′)→ x : unfoldr next s ′

It captures a general pattern for constructing lists. One can see it as an iterator style,
where an iterator consists of a state and a stepper function from that state to a sequence
element along with a new state, or to a terminal value. We can express a wide range of
functions that produce lists in this style.

iterate f = unfoldr (λx → Just (x , f x ))

enumFromTo n m = let next i | i >m = Nothing
| otherwise = Just (i , i + 1)

in unfoldr next n

map f = let next [ ] = Nothing
next (x : xs) = Just (f x , xs))

in unfoldr next

filter p = let next [ ] = Nothing
next (x : xs) | p x = Just (x , xs))

| otherwise = next xs
in unfoldr next

lines = let getLine "" = Nothing
getLine str = Just (line, drop 1 str ′)
where
(line, str ′) = break (≡ ’\n’) str

in unfoldr getLine

Note that there is some overlap with the functions that can be expressed with foldr ; in
particular functions like map and filter that both consume and produce lists.

7Svenningsson calls this function destroy but for symmetry we follow Gill and call it unbuild .
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So while unfoldr is for producing lists, unbuild is for consuming them. It takes a function
which consumes sequences produced in the iterator style of unfoldr and applies the
function to a suitable argument so as to obtain an equivalent function that consumes
lists.

unbuild :: (∀s . (s → Maybe (a, s))→ s → b)→ [a ]→ b
unbuild g xs = g uncons xs
where
uncons :: [a ]→ Maybe (a, [a ])
uncons [ ] = Nothing
uncons (x : xs) = Just (x , xs)

Using this function we can write various common list consumers and can rewrite trans-
formers like map and filter to consume their input using it.

foldr f z = unbuild (λnext s0 →
let go s = case next0 s of

Nothing → z
Just (x , s ′)→ f x (go s ′)

in go s0)

foldl f a = unbuild (λnext s0 →
let go a s = case next0 s of

Nothing → a
Just (x , s ′)→ go (f a x ) s ′

in go a s0)

map f = unbuild (λnext0 s0 →
let next s = case next0 s of

Nothing → Nothing
Just (x , s ′)→ Just (f x , s ′)

in unfoldr next s0)

filter p = unbuild (λnext0 s0 →
let next s = case next0 s of

Nothing → Nothing
Just (x , s ′) | p x → Just (x , s ′)

| otherwise → next s ′

in unfoldr next s0)

Fusion rule (unbuild/unfoldr). The main equation of the unbuild/unfoldr system is

∀k g s . unbuild g (unfoldr k s) = g k s

On the left hand side, the list produced by unfoldr is immediately consumed by unbuild .
The arguments to unfoldr are the stepper function and initial state – exactly what the
function passed to unbuild is expecting. On the right hand side the iterator consumer
function is applied directly to the stepper function and initial state, with no mention of
lists anywhere.



CHAPTER 1. INTRODUCTION 18

The sumSq example

As usual, let us illustrate the fusion technique with the sumSq example.

sumSq xs = sum (map sq xs)

This time we need to define sum and map in terms of unbuild and unfoldr . We already
defined map above. We could define sum as an instance of foldr which in turn we defined
above in terms of unbuild . However, since one of the primary claimed advantages of this
technique is that it can handle functions that use accumulating parameters, let us define
sum in terms of foldl which is also defined directly in terms of unbuild .

sum = foldl (+) 0

As we defined them above, the body of map and foldl are rather large. To make the
derivation more presentable let us adjust the definitions of map and sum using named
helper functions:

sum = unbuild sumIter
map f = unbuild (mapIter f )

sumIter next0 s0 = sumGo next0 0 s0
mapIter f next0 s0 = unfoldr (nextmap f next0) s0

sumGo next0 = let go a s = case next0 s of
Nothing → a
Just (x , s ′)→ go (a + x ) s ′

in go

nextmap f next0 s = case next0 s of
Nothing → Nothing
Just (x , s ′)→ Just (f x , s ′)

Now we can start with unfolding definitions

sum (map sq xs)

= { unfold the definition of sum and map }
unbuild sumIter (unbuild (mapIter sq) xs)

When we get to this point however it looks like we are stuck. We are trying to find an
instance of unbuild g (unfoldr f e) but what we have here is unbuild applied to unbuild
with the unfoldr hidden within the parameter to the inner unbuild . We want to somehow
move the outer unbuild inside the inner one so that it will be applied directly to the
unfoldr .

Fortunately we can calculate a suitable equation

unbuild g (unbuild g ′ xs)

= { unfold the definition of unbuild }
g uncons (g ′ uncons xs)

= { abstract over xs and the second occurrence of uncons }
(λnext s0 → g uncons (g ′ next s0)) uncons xs

= { fold instance of unbuild into a use of unbuild }
unbuild (λnext s0 → unbuild g (g ′ next s0)) xs
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We can use this equation as a rewrite rule just as we do with fusion rules

Fusion rule (unbuild/unbuild).

∀g g ′ xs . unbuild g (unbuild g ′ xs)
= unbuild (λnext s0 → unbuild g (g ′ next s0)) xs

We may now carry on from where we left off above and apply the unbuild/unbuild rule

unbuild sumIter (unbuild (mapIter sq) xs)

= { unbuild/unbuild rule }
unbuild (λnext s0 → unbuild sumIter (mapIter sq next s0)) xs

It will be convenient for the moment to focus on the inner unbuild sub-expression

unbuild sumIter (mapIter sq next s0)

= { unfold the definition of mapIter }
unbuild sumIter (unfoldr (nextmap sq next) s0)

= { unbuild/unfoldr fusion }
sumIter (nextmap sq next) s0

So we have managed to get the unbuild and unfoldr together so that we could apply the
fusion rule, however we are only half way to getting good final code.

Note that if we peek inside the composition of sumIter with nextmap we will see that
nextmap allocates values of type Maybe which are immediately consumed by the worker
function of sumIter . So in fact, while we have applied the fusion rule we have not reduced
the number of runtime allocations in comparison to the original list version of sumSq , we
have just shuffled them from one place to another. It is certainly the case that applying
the fusion rule has reduced allocations in comparison to the version of sumSq that used
sum and map defined in terms of unbuild and unfoldr but that is only because they were
worse than the original list versions!

Svenningsson (2002, Section 3.3 footnote 2) assures us that the Maybe type is only
transient and will be eliminated by further transformation. It is of course crucial that it
is eliminated otherwise the fusion system is not an optimisation. The transformation that
finally eliminates the intermediate Maybe allocations is the ‘case-of-case’ transformation
(Peyton Jones and Santos, 1998, Section 5). We can expose the opportunity for this by
unfolding more definitions

sumIter (nextmap sq next) s0

= { unfold the definition of sumIter }
sumGo (nextmap sq next) 0 s0

= { unfold the definition of sumGo }
let go a s = case nextmap sq next s of

Nothing → a
Just (x , s ′)→ go (a + x ) s ′

in go 0 s0

=
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= { unfold the definition of nextmap }
let go a s = case (case next s of

Nothing → Nothing
Just (x , s ′)→ Just (sq x , s ′))

of
Nothing → a
Just (x , s ′)→ go (a + x ) s ′

in go 0 s0

= { case-of-case transformation }
let go a s = case next s of

Nothing → a
Just (x , s ′)→ go (a + sq x ) s ′

in go 0 s0

So we have eliminated the intermediate allocations between sumIter and nextmap but we
still have the input to nextmap to worry about.

Recall that we were looking at a sub-expression and the outer context was

unbuild (λnext s → (. . .)) xs
=
(λnext s0 → (. . .)) uncons xs

So let us return to the outer context and β-reduce

= { substitute next := uncons , s0 := xs }
let go a s = case uncons s of

Nothing → a
Just (x , s ′)→ go (a + sq x ) s ′

in go 0 xs

= { unfold the definition of uncons }
let go a s = case (case s of

[ ] → Nothing
(x : s ′)→ Just (x , s ′))

of
Nothing → a
Just (x , s ′)→ go (a + sq x ) s ′

in go 0 xs

= { case-of-case transformation }
let go a s = case s of

[ ] → a
(x : s ′)→ go (a + sq x ) s ′

in go 0 xs

Again it is the case-of-case transformation that reduces the allocations. We are finally
down to doing strictly fewer allocations than the original list version of sumSq .
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Our final fused definition is

sumSq xs = go 0 xs
where
go a [ ] = a
go a (x : xs) = go (a + x × x ) xs

This is an optimal result as far as fusion goes since all the list allocations have been
eliminated.

Although the derivation was somewhat long winded it did not need any terribly so-
phisticated transformations. Primarily it involved unfolding, β-reduction, rewrite rule
application and the case-of-case transformation. All of these are local and have purely
syntactic criteria.

Note that the derivation would not have been much different if we had tried the version
of sum that does not use an accumulating parameter, as we used with foldr/build . In
comparison, while the derivation was straightforward with foldr/build , if we had tried
the accumulating parameter version then we would have needed to do an arity analysis
and arity raising transformation to turn the fused code into fast code that does not
allocate any closures.

The zip function

The other claimed advantage of the unbuild/unfoldr system over the foldr/build system
is that it can express zip and effectively fuse it on all inputs and outputs. The definition
is somewhat verbose:

zip as bs =
unbuild (λnexta sa 0 →
unbuild (λnextb sb 0 →

let next (sa , sb) =
case nexta sa of
Nothing → Nothing
Just (a, s ′a)→ case nextb sb of

Nothing → Nothing
Just (b, s ′b)→ Just ((a, b), (s ′a , s

′
b))

in unfoldr next (sa 0, sb 0)
) bs

) as

The key part is the definition of the new next iterator function which combines the nexta
and nextb of the corresponding inputs.

It is interesting to compare this definition to the standard definition of zip:

zip (a : as) (b : bs) = (a, b) : zip as bs
zip = [ ]

The standard definition is nice and declarative and appears to be symmetric in the two
input lists. By contrast the version above using unbuild and unfoldr is verbose, somewhat
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operational in character and asymmetric in its treatment of the two inputs, in that the
next function has to pull from one input sequence before the other. These characteristics
are typical of definitions in the unbuild/unfoldr framework. If we desugar the pattern
matching in the standard definition of zip however then we see that the two versions are
more recognisably similar.

zip as bs = case as of
[ ] → [ ]
(a : as ′)→ case bs of

[ ] → [ ]
(b : bs ′)→ (a, b) : zip as ′ bs ′

For a full example of fusing zip see (Svenningsson, 2002, Section 4). The derivation
goes through in much the same way as with sum and map above, using two instances
of unbuild/unfoldr fusion to expose opportunities for the case-of-case transformation to
finally eliminate the intermediate allocations.

Limitations

The unbuild/unfoldr system is not a panacea. Just as there are functions that cannot
be effectively fused in in the foldr/build system, such as foldl , there are functions that
cannot be effectively fused under the unbuild/unfoldr system. The canonical example is
filter . Let us see what goes wrong.

Let us use a modification of the sumSq example:

sumEven xs = sum (filter even xs)

The definitions are the same as before except for the nextfilter function.

sum = unbuild sumIter
filter p = unbuild (nextfilter p)

sumIter next0 s0 = sumGo next0 0 s0
filterIter p next0 s0 = unfoldr (nextfilter p next0) s0

sumGo next0 = let go a s = case next0 s of
Nothing → a
Just (x , s ′)→ go (a + x ) s ′

in go

nextfilter p next0 =
let fnext s = case next0 s of

Nothing → Nothing
Just (x , s ′) | p x → Just (x , s ′)

| otherwise → fnext s ′

in next
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The derivation initially proceeds exactly as in the sum/map example; indeed we are
able to apply the unbuild/unfoldr fusion rule. This gives us the following sub-expression,
from which point we can start unfolding definitions.

sumIter (nextfilter even next) s0

= { unfold the definition of sumIter }
sumGo (nextfilter even next) 0 s0

= { unfold the definition of sumGo }
let go a s = case nextfilter even next s of

Nothing → a
Just (x , s ′)→ go (a + x ) s ′

in go 0 s0

= { unfold the definition of nextfilter }
let go a s = case (let fnext s = case next s of

Nothing → Nothing
Just (x , s ′) | even x → Just (x , s ′)

| otherwise → fnext s ′

in fnext s)
of
Nothing → a
Just (x , s ′)→ go (a + x ) s ′

in go 0 s0

But now we are stuck. Where previously we could do a simple case-of-case transformation
we are now faced with a situation we might call “case of fixed point of case”. We can try
floating the let out of the way and unfolding the definition of fnext by one step to give
us something closer to what we want:

let fnext s = case next s of
Nothing → Nothing
Just (x , s ′) | even x → Just (x , s ′)

| otherwise → fnext s ′

go a s = case (case next s of
Nothing → Nothing
Just (x , s ′) | even x → Just (x , s ′)

| otherwise → fnext s ′)
of
Nothing → a
Just (x , s ′)→ go (a + x ) s ′

in go 0 s0

However we still cannot apply case-of-case because one out of the three branches of the
inner case is not manifestly a Nothing or Just constructor.

As things stand, this is where the compiler will stop8 and the final code will allocate and
immediately consume Just constructors. That is, we have succeeded in exchanging one

8In fact GHC will stop at the previous step because it refuses to unfold recursive definitions at all.
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set of allocations for another but we have failed to actually eliminate any. This example
underlines the need to analyse fusion systems carefully. It is not enough to check that
the fusion rules themselves reduce allocations.

This example is a key motivation for the approach we take with stream fusion. The
problem is with the local recursion getting in the way of the case-of-case transformation.
The local recursion arises from the filter function’s recursive next function. This suggests
that a possible solution would be to make the next non-recursive so that the ordinary
case-of-case transformation would work. This is indeed the approach we take with stream
fusion.

1.3.9 Expressiveness in shortcut fusion systems

It is in the nature of shortcut fusion systems that they restrict the way we write fusible
functions, simply because we are forced to write functions in terms of the given fusion
combinators.

With foldr/build fusion we have a good deal of flexibility in how we write list producers
while we are rather restricted in how we write list consumers. For list producers we can
use ordinary recursive functions; we get to determine the control flow using locally and
mutually recursive functions. The only constraint is that the collection of functions be
parametrised by cons and nil . On the other hand, list consumers have to fit the foldr
recursion pattern. While it is certainly true that foldr is highly expressive, many list
consumers are most naturally expressed as collections of mutually recursive functions
and forcing them into the foldr mould can feel like an exercise in obfuscation.

As usual, the situation with unbuild/unfoldr is reversed: we must write list producers in
a restricted way while we have much more freedom in how we write list consumers. List
consumers using unbuild have to use the supplied initial state and stepper function but
otherwise they are free to use whatever pattern of recursive functions is most natural.
List producers on the other hand have to be defined using a single stepper function that
gets passed a single state type. Again, it is true that unfoldr is quite expressive but
definitions using it can seem quite unnatural when compared to equivalent free-form
recursive definitions.

There are limits to what data structures we can hope to eliminate using deforestation
techniques. In informal terms, fusion systems only attempt to eliminate intermediate
data structures that are used for communication, not data structures that are used for
data storage. Functions that produce lists using build or unfoldr do so in a way that
is ‘write only’; that is, once each list element is produced it cannot subsequently be
inspected.

For example we could not hope to eliminate all the intermediate allocations in a
comparison-based sort function. Although we could eliminate lists used as the in-
put and output, we would necessarily have to replace them with some other intermediate
data structure (e.g. a heap).
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Consider, for example, a simple insertion sort on lists

sort = foldr insert [ ]

insert x [ ] = x : [ ]
insert x (y : ys) | x > y = y : insert x ys

| otherwise = x : y : ys

We cannot change this definition to construct the result list using build because the
insert function inspects the list so it can add the new element in the right position; it
uses the list as a read/write data store.

1.4 Stream fusion

A note on terminology. The term ‘stream’ is unfortunately somewhat overloaded.
Some authors take it to mean infinite sequences while others take it to mean possibly
terminating sequences. That is, some use the functor S a x = (a, x ) while other use
S a x = 1+ (a, x ). The streams in stream fusion are possibly terminating sequences.

Stream fusion is an alternative formulation of, and an evolutionary improvement on,
unbuild/unfoldr fusion. We will look at two formulations of streams: with and without
‘skip’. Streams without skip are simply a reformulation of the unbuild/unfoldr system.
The addition of skip is the essential extra ingredient that enables us to solve the filter
problem.

1.4.1 Streams without skip

Recall the types of unfoldr and unbuild

unfoldr :: (s → Maybe (a, s))→ s → [a ]

unbuild :: (∀s . (s → Maybe (a, s))→ s → b)→ [a ]→ b

These functions capture how we construct and consume lists using the iterator view. In
particular, the unfoldr function takes an initial state and a stepper function; it construct
a list by repeatedly applying the stepper function to successive states, starting with the
initial state.

A stream captures the iterator view by packing the initial state and stepper function
into a data structure. We can define a non-skipping stream as

data Stream a = ∃s . Stream (s → Maybe (a, s)) s

So while a stream is not a list, it is intended to be equivalent to a list. We can convert
from a Stream back to a list simply by unpacking the data structure and applying the
normal unfoldr function

unstream :: Stream a → [a ]
unstream (Stream next s) = unfoldr next s
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The opposite conversion is from a list to a Stream

stream :: [a ]→ Stream a
stream xs = Stream uncons xs
where
uncons :: [a ]→ Maybe (a, [a ])
uncons [ ] = Nothing
uncons (x : xs) = Just (x , xs)

Equivalently we could define stream in terms of unbuild

stream :: [a ]→ Stream a
stream xs = unbuild Stream xs

To convince oneself that this is the case it helps to stare for a moment at the type of the
Stream data constructor and to recall the definition of unbuild

Stream :: ∀s . (s → Maybe (a, s))→ s → Stream a

unbuild :: (∀s . (s → Maybe (a, s))→ s → b)→ [a ]→ b
unbuild g xs = g uncons xs

Of course for there to be a genuine equivalence between streams and lists it will have to
be the case that stream and unstream are mutual inverses:

stream ◦ unstream = id :: Stream a → Stream a
unstream ◦ stream = id :: [a ] → [a ]

We will return to this issue in Chapter 3.

Fusion rule (stream/unstream). The stream fusion system uses stream and unstream
as the fusion combinators and the key equation of the system is

∀s :: Stream a. stream (unstream s) = s

That is, converting from a stream to a list and back to a stream is an identity operation.
We use this as a rewrite rule to eliminate redundant conversions.

Having first looked at the foldr/build and unbuild/unfoldr systems, it is perhaps some-
what surprising that the stream fusion combinators are merely conversion functions
and that the fusion rule merely eliminates redundant conversions. Many standard list
functions are direct instances of foldr and unfoldr whereas there are few interesting
functions one can define just using functions that convert between lists and streams.

With stream fusion, operations are defined directly on the Stream type. For example the
map function on streams, which we will call maps , is defined as

maps :: (a → b)→ Stream a → Stream b
maps f (Stream next0 s0) = Stream next s0
where
next s = case next0 s of

Nothing → Nothing
Just (x , s ′)→ Just (f x , s ′)
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To lift this operation on streams to an operation on lists we use stream and unstream to
convert the input and output. The corresponding map on lists is defined as

map :: (a → b)→ [a ]→ [b ]
map f = unstream ◦maps f ◦ stream

Notice that the stream version of maps closely resembles the definition of map under the
unbuild/unfoldr system, in particular the definition of a new next function in terms of
the old next0 function. Of course this is not surprising given the correspondence between
streams and the unbuild/unfoldr functions.

Another example function on streams is foldl which consumes a stream

foldl :: (b → a → b)→ b → [a ]→ b
foldl f a = foldl s f a ◦ stream
foldl s :: (b → a → b)→ b → Stream a → b
foldl s f a (Stream next s0) = go a s0
where
go a s = case next s of

Nothing → a
Just (x , s ′)→ go (f a x ) s ′

It is interesting to compare the form of the body of this function with that of maps . The
body of foldl s unfolds the entire stream whereas maps does not, it merely creates a new
stepper function. Functions on streams are characterised by an operational style. Unlike
in a list data structure there is no lazy evaluation in a stream; delayed evaluation and
control flow are represented explicitly.

The opportunity for fusion in this system arises when a function that produces an output
list with unstream is composed with a function that consumes a list with stream. We
then have the opportunity to eliminate redundant conversions. We will see this in action
with our standard sumSq example.

As was the case for the unbuild/unfoldr system, we must be careful to check what extra
allocations are introduced and when they are eliminated. For example with map as
defined above in terms of unstream, maps and stream, there are three data constructor
allocations per sequence element. This contrasts with just one for the normal list version
of map. These allocations must all be eliminated for stream fusion to be an improvement.

The sumSq example

sumSq xs = sum (map sq xs)

We have already defined map and we will define sum in terms of foldl

sum = foldl (+) 0
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We start with unfolding definitions

sum (map sq xs)

= { unfold the definition of sum, foldl and map }
foldl s (+) 0 (stream (unstream (maps sq (stream xs))))

We are now at the point where we can see a redundant conversion from stream to list
and back again. We now apply the stream fusion rule

foldl s (+) 0 (stream (unstream (maps sq (stream xs))))

= { stream/unstream fusion rule }
foldl s (+) 0 (maps sq (stream xs))

As was the case with the unbuild/unfoldr system, applying the fusion rule only gets us
half way towards good final code. Were we to stop here we would get a worse result
than with the original list code. While applying the stream/unstream fusion rule has
eliminated two allocations per sequence element we still have two remaining allocations of
Maybe constructors. This is one more allocation per element than in the straightforward
list version.

The allocation points are at the composition boundary between functions on streams.
The producer allocates Maybe constructors and the consumer takes them apart. In the
sumSq example the allocation points are at the composition between foldl s and maps and
at the composition between maps and stream. The strategy to eliminate the allocations
at each composition boundary is to unfold definitions and to apply the case-of-case
transformation.

We proceed first with the inner composition maps sq (stream xs) and secondly with the
outer composition foldl s (+) 0 (. . .).

foldl s (+) 0 (maps sq (stream xs))

= { unfold definition of stream xs }
maps sq (Stream uncons xs)
where
uncons [ ] = Nothing
uncons (x : xs) = Just (x , xs)

= { unfold definition of maps sq }
foldl s (+) 0 (Stream next xs)
where
next s = case uncons s of

Nothing → Nothing
Just (x , s ′)→ Just (sq x , s ′)

uncons [ ] = Nothing
uncons (x : xs) = Just (x , xs)

=
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= { inline uncons and case-of-case transformation }
foldl s (+) 0 (Stream next xs)
where
next s = case s of

[ ] → Nothing
(x : xs)→ Just (sq x , xs)

The case-of-case transformation has eliminated the allocation for the inner composition
between maps and stream. We continue with the outer composition with foldl s .

= { unfold definition of foldl s (+) 0 }
go 0 xs
where
go a s = case next s of

Nothing → a
Just (x , s ′)→ go (a + x ) s ′

next s = case s of
[ ] → Nothing
(x : xs)→ Just (sq x , xs)

= { inline next and case-of-case transformation }
go 0 xs
where
go a s = case next s of

[ ] → a
(x : xs)→ go (a + sq x ) xs

So our final fused definition of sumSq is

sumSq xs = go 0 xs
where
go a [ ] = a
go a (x : xs) = go (a + x × x ) xs

This is exactly the same optimal outcome as with the unbuild/unfoldr system.

Whether we should prefer the unbuild/unfoldr view or the stream view is somewhat
a matter of taste. A slight advantage of the stream presentation is that many of the
definitions of standard functions are syntactically superficially simpler. A pedagogical
observation is that many people seem to find it easier to understand and write their own
functions in this iterator style when the focus is on an intermediate object – the stream –
rather than when the focus is on the construction (unfoldr) and consumption (unbuild)
of lists. An aesthetic advantage is that only a single fusion rule is needed; there is no
equivalent in the stream fusion system to the auxiliary unbuild/unbuild rule.

1.4.2 Streams with skip

Of course, merely reformulating the unbuild/unfoldr system to focus on the intermediate
representation as streams does not solve the shortcomings of the system for functions
like filter .
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Let us revisit the core of the problem that we encountered when trying to fuse
sum (filter even xs). The inner loop looked like so

let go a s = case (let fnext s = case next s of
Nothing → Nothing
Just (x , s ′) | even x → Just (x , s ′)

| otherwise → fnext s ′

in fnext s)
of
Nothing → a
Just (x , s ′)→ go (a + x ) s ′

The key feature is that while we had hoped for a case-of-case situation, we have a recursive
let wrapped around the inner case expression. This was because the body of the filter
function used a recursive stepper function

next s = case next0 s of
Nothing → Nothing
Just (x , s ′) | p x → Just (x , s ′)

| otherwise → next s ′

Recall the definition of the non-skipping stream data type

data Stream a = ∃s . Stream (s → Maybe (a, s)) s

Focus for a moment on the type of the stepper function

s → Maybe (a, s)

The stepper function for filter had to be recursive because the type of the stepper function
dictates that it must yield an element or terminate the sequence. Yet in the case that an
element is filtered out we have no element to yield, we are forced to recurse until we do
get an element that satisfies the filter predicate.

This suggests a possible solution: give the stepper function a third option, let it not
yield an element. Let it return a new stream state, but no corresponding element of the
sequence. We can describe the options with a new data type

data Step a s = Done
| Skip s
| Yield a s

We then redefine Stream using this new Step type

data Stream a = ∃s . Stream (s → Step a s) s

The intended meaning of these ‘skipping streams’ is that skips are ignored. The abstract
sequence is the elements produced via Yield with any intermediate Skip steps ignored.
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Having redefined Stream we must adjust the stream and unstream functions to take
account of Skip.

stream :: [a ]→ Stream a
stream xs = Stream uncons xs
where
uncons [ ] = Done
uncons (x : xs) = Yield x xs

unstream :: Stream a → [a ]
unstream (Stream next s0) = unfold next s0
where
unfold next s = case next s of

Done → [ ]
Skip s ′ → unfold next s ′

Yield x s ′ → x : unfold next s ′

Note the recursion in the Skip case in unstream9.

We must also adjust the other operations to take account of the fact that input streams
may skip. This is a knock-on cost for every function on streams, even those that do not
introduce additional skips themselves. For example we must redefine maps and foldl s

maps :: (a → b)→ Stream a → Stream b
maps f (Stream next0 s0) = Stream next s0
where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x ) s ′

foldl s :: (b → a → b)→ b → Stream a → b
foldl s f a (Stream next s0) = go a s0
where
go a s = case next s of

Done → a
Skip s ′ → go a s ′

Yield x s ′ → go (f a x ) s ′

The map and foldl list wrappers are unchanged, though obviously they use the redefined
stream and unstream.

9This recursion is not guaranteed to be productive. We will return to this issue in Section 3.6
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Now with the option to skip, we can write the filter s function on Stream so that the
stepper function does not need to recurse

filter :: (a → Bool)→ Stream a → Stream a
filter p = unstream ◦ filter s p ◦ stream
filter s :: (a → Bool)→ Stream a → Stream a
filter s p (Stream next0 s0) = Stream next s0
where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ | p x → Yield x s ′

| otherwise → Skip s ′

With this definition we should revisit the sumEven example that failed to fuse effectively
under the unbuild/unfoldr system.

The sumEven example

sumEven xs = sum (filter even xs)

The strategy is now completely routine. We unfold definitions, apply the stream fusion
rule and then reduce the result by unfolding definitions and applying the case-of-case
transformation.

sum (filter even xs)

= { unfold definition of filter and sum }
foldl s (+) 0 (stream (unstream (filter s even (stream xs))))

= { stream/unstream fusion }
foldl s (+) 0 (filter s even (stream xs))

= { unfold definition of stream }
foldl s (+) 0 (filter s even (Stream uncons xs))
where
uncons [ ] = Done
uncons (x : xs) = Yield x xs

= { unfold definition of filter s }
foldl s (+) 0 (Stream next xs)
where
next s = case uncons s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ | even x → Yield x s ′

| otherwise → Skip s ′

uncons [ ] = Done
uncons (x : xs) = Yield x xs

=
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= { inline uncons and case-of-case transformation }
foldl s (+) 0 (Stream next xs)
where
next s = case s of

[ ] → Done
(x : s ′) | even x → Yield x s ′

| otherwise → Skip s ′

= { unfold definition of foldl s (+) 0 }
go 0 xs
where
go a s = case next s of

Done → a
Skip s ′ → go a s ′

Yield x s ′ → go (a + x ) s ′

next s = case s of
[ ] → Done
(x : s ′) | even x → Yield x s ′

| otherwise → Skip s ′

= { inline next and case-of-case transformation }
go 0 xs
where
go a s = case next s of

[ ] → a
(x : s ′) | even x → go (a + x ) s ′

| otherwise → go a s ′

So the overall sumEven definition is

sumEven xs = go 0 xs
where
go a [ ] = a
go a (x : xs) | even x = go (a + x ) xs

| otherwise = go a xs

This is another optimal result: all the list allocations have been eliminated.

This example is one where stream fusion fares better than either of the foldr/build or
unbuild/unfoldr fusion systems. Recall that foldr/build was unable to fuse foldl , while
unbuild/unfoldr could not effectively fuse filter .

Note that the reformulation as streams is independent from the addition of skip. The
unbuild/unfoldr system could also be extended with skip, in which case we would expect
it to handle filter successfully.
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Worries about skip

There are several legitimate worries we might have about skip.

1. It is just an ad hoc extension to handle filter? Will we need other extensions for
other functions or can all functions on streams now be written with a non-recursive
stepper function?

2. Skip adds extra complexity to each function that works with streams. Is it worth
it?

3. Skip adds extra complexity to the theory. It is no longer obvious that skipping
streams are equivalent to lists.

The long answer to these questions are given in Chapters 3 and 4. The short answer
is that it turns out that skip is a general extension, that it helps with functions other
than filter and further that it enables very many stream functions to be written with
non-recursive stepper functions. It is true that skip makes the theory more difficult but
we will show in Chapter 3 that there is a suitable theoretical explanation. It is also true
that skip complicates the definition of functions on streams however the treatment of
skip in input streams is entirely uniform so the extra complexity is not especially great.
Overall, adding skip does seem to be worth it. It appears to be essential to effectively
fuse a number of common functions.

1.4.3 Writing stream functions

We have already seen a few examples of stream versions of list functions: maps , filter s
and foldl s . These examples are relatively simple and they process sequences in a very
regular way. It is reasonable to wonder how we might write more complicated stream
functions that process sequences in less regular ways. Indeed, given that we have banished
some uses of recursion we may wonder whether streams are expressive enough to write
many interesting functions at all.

The first observation we can make is that most list functions defined in terms of unfoldr
can be easily translated into stream versions. The only limitation is that the unfoldr
stepper function must not be recursive. This easy translation helps us only so far because
despite encouragement to use unfoldr (Gibbons and Jones, 1998), it remains a rather
infrequently used tool in the functional programmer’s toolbox.

When writing functions that produce or consume ordinary lists we are able to use an
expressive and flexible style. We are able to make use of mutually recursive functions
to handle switching between modes. The usual variable scoping rules allow variables
defined in an outer scope to be used in inner recursive functions.

By contrast, writing functions for the unbuild/unfoldr and stream fusion systems is harder
because it constrains us to use a single stepper function. We have what is sometimes
called an ‘inversion of control’. With recursive list functions we simply pass parameters to
functions. With a stepper function on the other hand, any information needed for future
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steps has to be stashed away in the state and then retrieved in subsequent steps. Stream
fusion makes things harder still by requiring that the stepper function be non-recursive.

Modes and state shapes

The trick to writing stepper functions within the restrictions is to make liberal use
of structure in the stream state and liberal use of Skip. This helps particularly with
functions that need to construct sequences in an irregular way, switching between a
number of ‘modes’. Traditionally one might use mutually recursive functions to handle
multiple modes, and straightforward function calls to switch between modes.

mode1 :: Int → Int → [Int ]
mode1 a b | p a = mode2 (f b)

mode2 :: Int → [Int ]

With a stepper function, multiple modes can be represented by using a data type for the
stream state that has multiple alternatives, one for each mode. Each mode can have a
separate set of variables.

data State = Mode1 Int Int
| Mode2 Int

The stepper function can be defined separately for each mode.

next (Mode1 a b) = . . .
next (Mode2 c) = . . .

Instead of passing parameters to functions, the stepper function can return Skip specifying
a mode and the parameters for that mode.

next (Mode1 a b) | p a = Skip (Mode2 (f b))

In this style, local recursive functions have to be lifted to the top level and given their
own mode. The changes involved are rather akin to defunctionalisation (Reynolds, 1972;
Danvy and Nielsen, 2001).

In Chapter 3 we will see that stream modes, and transitions between modes, turn out to
be relevant for the structure of inductive proofs about individual stream functions.

In Chapter 4 we will refer the data constructors representing the different modes as ‘state
shapes’. This is because the constructors provide the top level structure, or shape, of
the stream state. We will also find that it is useful to have state shapes that use nested
applications of constructors.

Example

Let us look at an example of a stream function with a non-trivial stream state, and
correspondingly with multiple state shapes. This also serves as an informal example of
the derivation of a stream version of a list function.
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The init function is a standard list function that returns the initial elements of a list,
or more precisely all elements except the last element. The list version can be written
simply as

init [x ] = [ ]
init (x : xs) = x : init xs

Note that the [ ] case is an error, which is sometimes written explicitly

init [ ] = error "init: empty list"

This simple definition belies an inefficiency: the function looks one list element beyond
what it consumes in each iteration. This fact is clearer if we desugar the pattern matching
of the three clauses above

init xs = case xs of
[ ] → error "init: empty list"

(x : xs ′)→ case xs ′ of
[ ] → [ ]
( : )→ x : init xs ′

Notice in the last case, that the recursive call uses xs ′ which is known to be of the pattern
( : ). This observation motivates the following optimised10 definition

init [ ] = error "init: empty list"

init (x : xs) = init ′ x xs

init ′ x [ ] = [ ]
init ′ x (x ′ : xs) = x : init ′ x ′ xs

This version has two modes, one mode for the very first list element and a second mode
for the remaining elements. Note that in the second mode we hold on to the preceding
list element rather than having to look ahead. Crucially, this version only deconstructs
one list cell per iteration rather than two in the original. This optimised definition can
be directly translated into a stream version

init s :: Stream a → Stream a
init s (Stream next0 s0) = Stream next (Nothing , s0)
where
next (Nothing , s) = case next0 s of

Done → error "init: empty stream"

Skip s ′ → Skip (Nothing , s ′)
Yield x s ′ → Skip (Just x , s ′)

next (Just x , s) = case next0 s of
Done → Done
Skip s ′ → Skip (Just x , s ′)
Yield x ′ s ′ → Yield x (Just x ′, s ′)

We have two state shapes: (Nothing , s) and (Just x , s).

10This improved definition can be derived automatically; Peyton Jones (2007) uses the similar example
of last as the introductory example to motivate call-pattern specialisation.
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Worrying about allocations

While in the above example we have been able to derive a stream version of a list function,
we do not provide a general translation of list-producing functions into equivalent stream-
producing functions11. Of course in a trivial sense there is always a translation: simply
wrap stream around an existing list producer. Since the purpose of stream fusion is to
reduce allocations however then what we are really interested in is a translation that
uses the same number of allocations. A stream version that uses additional internal data
structures is not acceptable.

There are other situations where we must worry about allocations: we must not traverse
a stream multiple times, including limited ‘lookahead’. In the init example above we
were able to transform the function so that instead of looking ahead it stores extra
information in the stream state. The reason is that while lists are memoised, streams are
not: calling a stepper function twice with the same input state will repeat the work and
any allocations for that step. We consider this and similar issues in Chapter 4.

Given that we must worry about the allocations of stream versions in comparison to
their list counterparts, we must be concerned about using extra allocations to represent
stream state shapes. It would certainly be unfortunate if our main technique to gain
expressiveness in stream functions leads to using more allocations thus neutralising any
saving from stream fusion.

The solution to this conundrum is to promise to eventually eliminate all the allocations
for the data constructors used to represent the state shapes. A significant portion of the
optimisation argument in Chapter 4 is dedicated to substantiating this promise.

11In Section 4.8.4 we do describe a partial translation that works for many cases.



Chapter 2

Technical preliminaries

The purpose of this chapter is to present the major concepts that we make use of in the
subsequent chapters. In particular this chapter introduces the syntax and semantics of
System F and the representation of data structures within System F. Haskell and CPOs
are also introduced briefly.

This chapter is not a standalone introduction to these topics, rather the purpose is to
make clear which aspects we need for the subsequent chapter and to exhibit the notation
we will use.

2.1 System F

For the initial exploration of proofs for shortcut fusion systems, including stream fusion,
it helps to use a theoretical model that is simpler than the real programming language in
which we want to apply the results. Using a simpler theoretical model helps to distinguish
the essential aspects from the incidental aspects and helps to make any results more
portable to other similar real programming languages.

We are working in the context of functional programming, which means some extension
of the lambda calculus. Specifically, we wish to apply fusion results in the functional
programming language Haskell. Since Haskell is typed we must use a typed lambda
calculus for our theoretical model. System F (Girard et al., 1989, Chapter 11), also
known as the polymorphic lambda calculus, is the natural choice because it is relatively
simple, well understood and expressive enough to handle the Hindley-Milner type system
on which Haskell’s own type system is based. System F, like simply-typed lambda
calculus, is an explicitly typed language. It is also strongly normalising: evaluation
always terminates and evaluation order does not matter.

System F is a good initial setting to explore shortcut fusion. Despite being relatively
simple, System F allows us to encode data types and there are semantic models for
System F which allow us to prove strong properties about these encodings. Using
encodings we can express familiar types like sums and products, and more interestingly,
recursive types like lists and trees.
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The encodings of recursive data types in System F clarifies the distinction between the
view of data used by foldr/build fusion and the view used by unbuild/unfoldr fusion. In
System F the types of data used by each system is actually completely distinct whereas in
standard functional programming languages the two fusion systems merely take different
views on the same types of data.

2.1.1 Syntax

System F extends simply-typed lambda calculus with a universal type quantifier (∀a. . . .)
and two additional term-level constructs: universal abstraction (Λa → . . .) and universal
application. This directly expresses parametric polymorphism and terms that have
universally quantified types.

A good example is the definition and use of the polymorphic identity function. That
is, an identity function that works for all types1. Consider the monomorphic identity
function in simply-typed lambda calculus, for a specific type A:

λ(x :: A)→ x

In simply-typed lambda calculus we must annotate lambda-bound variables with their
type. Some presentations also annotate variables at their use sites. This improves clarity
in some circumstances but is not strictly necessary. The term above has the type A→ A
and we write it as

λ(x :: A)→ x :: A→ A

The polymorphic lambda calculus allows us to express the polymorphic identity function.
We use the universal type quantifier and type variables to describe the type, namely
∀a.a → a. In the term, the parametrisation by a type is made explicit by passing
the type as an extra argument. This is directly analogous to lambda abstraction for
parametrising terms by values. Universal abstraction parametrises terms by types:

Λa → λ(x :: a)→ x :: ∀a. a → a

When we use this polymorphic identity function we have to supply both a type parameter
and a value parameter.

For value parameters we use ordinary term application and for type parameters we use
universal application. To distinguish universal application from ordinary term application,
some presentations distinguish type variables from value variables by the use of upper
or lower case characters. We follow the Haskell convention of using lower case for type
variables and upper case for type constants. Since we use lower case for both term
variables and type variables, there is the potential that the distinction between universal
application and ordinary term application is somewhat unclear. It can be distinguished
however since type variables are bound by a universal abstraction while term variables
are bound by lambda abstraction. In addition, we will typically use A,B ,C , . . . and
a, b, c, . . . for type constants and variables respectively. For term variables we will use

1Another view is to say that we have a family of identity functions, one for each type.
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f , g , h, k for functions and x , y , z for other parameters. Alternatively we will use longer
more descriptive names such as map, fold etc.

We will sometimes use subscripts on names. This is to be understood not as some kind
of parameter but as a tag that is part of the name. In particular we use subscript s
to distinguish stream versions of functions such as maps and fold s from their ordinary
counterparts.

Given the polymorphic identity function, we can obtain a monomorphic version at type
A→ A by applying the polymorphic version to the type A:

(Λa → λ(x :: a)→ x ) A :: (a → a) [a := A ]

The usual β-reduction and substitution applies to give us the monomorphic version

λ(x :: A)→ x :: A→ A

In the following sections where we use System F we will take a few liberties for the sake
of presentation. We will sometimes omit explicit typing where it is not ambiguous. We
will use an equational style where we give explicit names for terms. For example we can
name the polymorphic identity function id and define it using the syntax

id = Λa → λ(x :: a)→ x

Uses of such names are to be understood as their corresponding terms, using normal
capture-avoiding substitution. Note that since these names are part of the meta-language
and not the concrete syntax of System F, these names cannot cannot appear in the
right hand side of their own definitions. Similarly, mutually recursive definitions are
not allowed. It must always be possible to expand all the ‘syntactic sugar’ to get raw
System F syntax.

We will sometimes specify the type for a named term separately from the definition of
the term itself, such as

id :: ∀a. a → a
id = Λa → λ(x :: a)→ x

Indeed we will occasionally give a partial specification of a named term by giving just
the name and its type.

We will also use the syntactic convention that definitions such as

f x y = . . .

with variables on the left hand side are understood as lambda abstractions (or universal
abstractions as appropriate) on the right hand side

f = λx → λy → . . .

We will make frequent use of pairs, using the notation (x , y) :: (A,B), where x :: A and
y :: B . This notation does not add anything new since pairs can be encoded in System F.
We will cover the details of the encoding shortly.
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2.1.2 Parametricity

In lambda calculus and its many extensions, there are many proofs we can do using just
syntax. For example proving a particular term has a particular type, or that two terms
are equivalent by reduction rules are things we can do using just the syntactic rules of
the language.

As a concrete example, we can prove that we can encode pairs in System F. We do
this by inventing a suitable encoding and then proving that the encoding has the usual
properties that we expect of pairs, namely that we can put two things in and then get
them out again. In particular, in System F the encoding for a pair type (A,B) uses
terms of type

(A,B) = ∀c. (A→ B → c)→ c

We can show syntactically that there are terms of this type and that we can legitimately
call them pairs. Going further, we might hope that every term of this type is a pair. We
cannot prove it however if we only stick to syntactic rules.

A statement about all members of some type is a semantic property, not a syntactic
one. It is the semantic model that describes the full range of possible values, and in a
typed language the range of values in each type. In a sense, the syntax of terms gives
a lower bound on what is in each type and the semantics gives the upper bound. It is
quite possible to construct different semantics for the same syntax that admit different
ranges of possible values in the same type.

As a simple example, consider the polymorphic identity function in System F

Λa → λ(x :: a)→ x :: ∀a. a → a

There is a straightforward syntactic proof that this term has the described type. We
could construct other terms with the same type, though all the ones we could construct
would be equivalent by reduction rules and thus any sensible denotational semantics must
assign them the same value. So although we can use syntax to show the is at least one
value in the type ∀a. a → a, the full range of values depends on the semantic model that
we pick. It is quite possible to pick a semantics that says that there is a greater range of
values in a type than we can actually construct using terms in the syntax. For instance,
is it possible to have an f :: ∀a. a → a such that f 3 = 4? This depends on the semantic
model we pick. We could imagine a model which interprets elements of ∀a. a → a as
being a family of functions a → a for each type a, with no particular restrictions. In
this interpretation there is no problem with each member of the family doing something
different on each type. This is known as ad hoc polymorphism. Languages that have a
‘type case’ construct allow ad hoc polymorphism.

The intention and intuition for System F types like ∀a. a → a is that there is a degree
of uniformity in how values of different types are treated. This is the intuitive notion
of parametricity, that parametric polymorphic functions behave the same at each type.
Conversely, polymorphic functions cannot make ad hoc distinctions based on specific
types. This notion would outlaw f 3 = 4 because it is doing something special for integers
that cannot be done at all other types. Our intention with the type ∀a. a → a is that
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the only value of this type is the identity function (or the family of identity functions,
one for each type). A parametric semantic model would give us this guarantee.

There are several parametric models of System F, including PERs (Bainbridge et al.,
1990) and frame models (Bruce et al., 1990). Fortunately the details of each model are
not crucial; the specific properties in which we are interested can be derived from the
definition of parametricity without reference to the details of the underlying model.

2.1.3 Free theorems

An important observation is that parametricity tells us particular properties about the
values of particular types. This observation was made by Wadler (1989) who coined the
term free theorems for properties about specific types obtained via parametricity.

In the next chapter we rely in several places on free theorems obtained from parametric
polymorphic types so we now review the details of the derivation technique.

There is more than one way of formalising parametricity (Plotkin and Abadi, 1993,
Section 2.2). The free theorems technique uses the standard relational formalisation of
parametricity. The approach is to consider types as relations. The relations are built
up following the structure of the type. The parametricity property is then stated as a
membership property on these relations.

The free theorem for a type is derived by starting with the relation corresponding to
the type. The definition of parametricity on that relation is then unfolded step by step
according to the structure of the relation. The final step is to specialise the property on
relations to a corresponding property on functions2.

To illustrate the technique we will derive the free theorem for the type of the polymorphic
identity function. We start with some arbitrary value g of the type in question

g :: ∀a.a → a

We must first give the relation corresponding to this type. It is built using the → and ∀
connectives. Wadler (1989, Section 2) gives the rules for interpreting these operations on
relations. We write A :: A↔ A′ which should be read as a relation A between the type
A and the type A′.

Definition 2.1.1. The relation corresponding to a base type such as Int is the identity
relation IInt :: Int ↔ Int

(x , x ′) ∈ IInt ⇐⇒ x = x ′

Definition 2.1.2. For a relation A :: A ↔ A′ and relation B :: B ↔ B ′ the relation
A → B :: (A→ B)↔ (A′ → B ′) is defined by

(f , f ′) ∈ A → B
⇐⇒
for all (x , x ′) ∈ A, (f x , f ′ x ′) ∈ B

2This is because we are only interested in functions. The original property on relations is useful in
other contexts.
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Definition 2.1.3. For a parametrised relation F A :: F A↔ F ′ A′, the relation
∀X .F X :: ∀X .F X ↔ ∀X ′.F ′ X ′ is defined by

(f , f ′) ∈ ∀X .F X
⇐⇒
for all A :: A↔ A′, (f A, f ′ A′) ∈ F A

The parametricity property itself is stated as:

Definition 2.1.4 (Parametricity). If t :: T and T is the relation corresponding to the
type T then (t , t) ∈ T .

We start by writing down the parametricity property for g and then unfolding the
membership definition for the relation corresponding to the type of g

(g , g) ∈ ∀X .X → X
⇐⇒ { unfold membership definition for a parametrised relation }

for all A :: A↔ A′,
(g A, g A′) ∈ A → A

⇐⇒ { unfold membership definition for a (→) relation }
for all A :: A↔ A′,
for all (x , x ′) ∈ A,
(g A x , g A′ x ′) ∈ A

Now instead of a relation A :: A ↔ A′ we want to specialise to a function f :: A → A′.
Where we had (x , x ′) ∈ A, we now get f x = x ′.

for all f :: A→ A′,
for all x :: A,
f x = x ′

=⇒
f (g A x ) = g A′ x ′

We can simplify this by substituting x ′ and using function composition

f x = x ′ =⇒ f (g A x ) = g A′ x ′

=⇒
f (g A x ) = g A′ (f x )

=⇒
f ◦ g A = g A′ ◦ f

So the overall statement of the free theorem for g is

for all f :: A→ A′,
f ◦ g A = g A′ ◦ f

and note that this holds for arbitrary types A and A′.
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Given the free theorem we can now see that g = id . We pick f as a constant function
const a ′ for some a ′ :: A′

const a ′ ◦ g A = g A′ ◦ const a ′

=⇒ { apply both sides to some a :: A }
(const a ′ ◦ g A) a = (g A′ ◦ const a ′) a

=⇒ { unfold const and β-reduce }
a ′ = g A′ a ′

Hence g is a polymorphic identity function, which is unique up to isomorphism.

2.1.4 Existential types

We will make use of the fact that System F lets us use existentially quantified types
(Girard et al., 1989, Section 11.3.5). Existential quantification can be defined in System F
in terms of universal quantification by the following encoding

∃a.T a = ∀b.(∀a.T a → b)→ b

We can construct terms of this type using the following form

Λb → λ(f :: ∀a.T a → b)→ f A x

Where x is some term of type T A. We use a pair notation (T A, x) for these terms.
That is, given x :: T A we define

(T A, x ) :: ∃a.T a
(T A, x ) = Λb → λ(f :: ∀a.T a → b)→ f A x

This pair notation can be distinguished from ordinary pair terms since for an existential
type, the first component of the pair is a type.

A way to understand this encoding is to consider how to use a value of an existentially
quantified type. For the sake of being concrete, imagine we have a value e of type ∃a.a.
We cannot do anything useful with this type of course, but it is instructive to see exactly
why.

We are interested in consuming our value e :: ∃a.a to produce a value of some concrete
type B . Expanding the encoding we get e :: ∀b.(∀a.a → b) → b. So e is a function
expecting a type parameter and a ‘consumer’ function. We will supply our concrete type
B and a consumer function of type ∀a.a → B . Due to parametricity, all functions with
type ∀a.a → B must be constant functions – which explains why we cannot do anything
useful with e :: ∃a.a. Let us pick a constant function that returns a particular y :: B .
Thus our consumer term is

(Λa → λ( :: a)→ y) :: ∀a.a → B

We apply e to the result type B and the consumer function:

e B (Λa → λ( :: a)→ y) :: B
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A key thing to notice is that the ‘real’ internal type of the value is only available within
the scope of the consuming lambda function (as the type parameter a). Of course the
lambda function is required to be polymorphic in that type, so it must be prepared
to consume the value irrespective of the concrete type parameter. Note also that the
result of the consuming function cannot use the ‘real’ internal type because it must be
polymorphic in it and the result type cannot be parametrised by it because the scope of
the type variables does not make that possible. Thus the ‘real’ internal type of the value
is fully encapsulated.

A somewhat more interesting example is p :: ∃a.(a, a → Bool) since then at least we can
do something with the existentially typed value; we can apply the function to the value.

p :: ∃a.(a, a → Bool)
consume :: ∀a.(a, a → Bool)→ Bool
consume = Λa → λ((x , f ) :: (a, a → Bool))→ f x

p Bool consume :: Bool

In addition to consuming, we need to be able to construct terms with an existential type.
Let us take the second example, namely p :: ∃a.(a, a → Bool). When we invent the term
of this type we get to pick the concrete ‘real’ type. So we want a term p with the type

p :: ∀b.(∀a.(a, a → Bool)→ b)→ b

Following the structure of the type, we need to start with a type lambda

p = Λb → . . .

Next is the function argument of type ∀a.(a, a → Bool)→ b

p = Λb → λ(f :: ∀a.(a, a → Bool)→ b)→ . . .

Since the result must be of type b we must call f with suitable parameters. The function
f expects a type argument and a pair of value and function. Here is where we get to
choose the type argument and also the pair of values using whatever type we choose. For
example let us pick Int and the pair (3, λn → n > 0):

p = Λb → λ(f :: ∀a.(a, a → Bool)→ b)→ f Int (3, λn → n > 0)

This gives us an instance of the general form mentioned at the beginning of this section.
Using the pair notation we can rewrite p as just

p = (Int , (3, λn → n > 0))

To take such values apart we use a lambda pattern notation:

h :: ∃a.(a, a → Bool)→ . . .
h = λ(a, (x , f ) :: (a, a → Bool))→ . . .

This translates as

h :: ∃a.(a, a → Bool)→ . . .
h = λp → p (Λa → λ((x , f ) :: (a, a → Bool))→ . . .)
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2.1.5 Categorical view

Notation and concepts from category theory are used to describe various constructions
in System F, in particular the semantics of data types.

Wraith (1989) argues that a good semantic model for System F should implement
Hagino’s notion of a categorical programming language. A categorical programming
language (Hagino, 1987) is required to provide various type constructors with appropriate
corresponding categorical properties. For example, data types for sums and products are
required to be proper categorical sums and products. For System F these various types
are implemented by encodings in terms of the basic System F syntax. We will cover the
most significant constructions in the next section.

The category for System F has types as the objects and functions as the morphisms. In
this context a functor F is a type parametrised by a type variable. Given a function
f ::A→ B we can obtain a corresponding ‘lifted’ function f ′ ::F A→ F B . As is required
for F to be a categorical functor, the functions we can obtain by lifting preserve identities
and function composition.

The traditional notation for a lifted function is

F f :: F A→ F B

This notation uses the name of the functor at the term level as well as at the type level.
When using Haskell notation we will instead use the functor name only at the type level
and use the special term fmap to lift functions.

fmap f :: F A→ F B

Which functor is being used for the lifting is determined by the type3.

2.2 Representation of data

The notion of data is of fundamental importance in programming. A syntax and semantics
for data is directly supported in standard functional programming languages. Lambda
calculus does not have data as primitive. Despite this, the notion of data originates
with lambda calculus. The notion crops up naturally via encodings in terms of lambda
functions. The encoding gives rise to a semantics and that semantics can be captured
abstractly. It is this abstract semantics that is implemented in standard functional
programming languages in terms of efficient machine primitives.

Though the meaning of data can be precisely described in abstract terms without reference
to the lambda calculus encoding, many of the patterns and properties of functions that
manipulate data are closely related to the lambda calculus encoding. It thus behoves us
to study the encoding.

The standard encoding is called the Church encoding, named after Alonzo Church who
discovered it. In the Church encoding, data values are represented by higher-order

3Note therefore that when using this Haskell notation we are limited to one functor per type.
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functions for consuming the data. Where standard functional languages provide a special
case syntax for consuming data, such as

case e of
C1 x y → . . .
C2 z → . . .

In the Church encoding, the equivalent is achieved by applying the ‘representation
function’ (the value e in this example) to suitable functions that are prepared to consume
the sub-components of the data structure

e (λx y → . . .)
(λz → . . .)

The Church encoding also works in System F. Indeed it works particularly nicely in
System F because the encodings for various structures have precisely corresponding types.
In the context of System F, this form of data is called a free structure (Girard et al.,
1989, Section 11.4).

The kinds of data types that we can define using the Church encoding correspond
to the algebraic data types that standard functional programming languages provide
as the primary mechanism for user-defined data types. These types include products
(records/tuples), sums (alternatives) and recursive types like lists and trees. It does
not include types that are added to languages as primitives such as machine integers or
arrays.

Girard et al. (1989, Section 11.3–11.5) gives a detailed yet accessible introduction to
the encoding of data within System F. In the remainder of this section we give a brief
presentation.

2.2.1 Products and sums

A pair type, consisting of types A and B , can be encoded using terms of type ∀c. (A→
B → c) → c. Note that we use the notation (A,B) for pair types rather than the
traditional A× B . We thus define

(A,B) = ∀c. (A→ B → c)→ c

At the term level, a pair (x , y) :: (A,B) is encoded as the term

(Λc → λ(f :: A→ B → c)→ f x y) :: ∀c. (A→ B → c)→ c

We can define a general pair constructor and first and second projections

pair :: ∀a b. a → b → (∀c.(a → b → c)→ c)
pair a b x y = Λc → λf → f c x y

fst :: ∀a b. (∀c.(a → b → c)→ c)→ a
fst a b p = p a (λx y → x )

snd :: ∀a b. (∀c.(a → b → c)→ c)→ b
snd a b p = p b (λx y → y)
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To be sure that these encodings behave like pairs we would wish to show that
fst a b (pair a b x y) = x and that snd a b (pair a b x y) = y . This is trivial
by β-reduction.

We would also like to know that all values of type ∀c. (A→ B → c)→ c correspond to
the encoding of some pair. That is we would like to show that pair (fst p) (snd p) = p
for all p :: ∀c. (A→ B → c)→ c. This can be proved using parametricity. For example,
Plotkin and Abadi (1993, Section 3.1) show that a formulation of parametricity in terms
of dinatural transformations can be derived from the standard relational formulation and
use dinaturality to prove the above property for pairs.

The encoding for alternatives, or sums, is similar in style. The sum type A+B is encoded
using terms of type

A+ B = ∀c. (A→ c)→ (B → c)→ c

The constructors left and right , and the casesum deconstructor are defined as

left :: ∀a b. a → (∀c.(a → c)→ (b → c)→ c)
left x = λl r → l x

right :: ∀a b. b → (∀c.(a → c)→ (b → c)→ c)
right y = λl r → r y

casesum :: ∀a b c. (a → c)→ (b → c)
→ (∀c.(a → c)→ (b → c)→ c)→ c

casesum s l r = s l r

The proofs that casesum (left x ) l r = l x and casesum (right x ) l r = r x are again
syntactic and straightforward. The proof that all values in the sum type correspond to
encodings of sums requires parametricity.

2.2.2 Free structures

The appropriate generalisation of simple binary sums and products is a free structure
(Girard et al., 1989, Section 11.4). A free structure is an abstract notion of a sum-of-
products data structure, which in System F we can implement using a Church encoding.

A free structure D is described by zero or more data constructors which are functions
f0, f1, . . . , fn with corresponding types S0, S1, . . . , Sn . Each type Si is of the form

Si = Ti ,0 → Ti ,1 → . . .→ Ti ,ki → D

That is, we can have any finite number of constructors and each constructor can have
any finite number of arguments. Each data value of the structure D must be represented
uniquely by application of the data constructor functions. The uniqueness property is
necessary for the possibility of taking a data value apart without losing anything.

As an example, consider a (parametrised) free structure Maybe b with two data construc-
tors Nothing and Just

Nothing ::Maybe
Just :: b → Maybe
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In System F, a free structure D is encoded using terms of type

D = ∀a. S0 [D := a ]→ S1 [D := a ]→ . . .→ Sn [D := a ]→ a

where each Si is as defined above and all occurrences of D are replaced by the type
variable a. All terms of this type correspond to applications of the data constructors
f0 . . fn (Girard et al., 1989, Section 11.4.3, 15.1.1).

For example, for the free structure Maybe b we have two constructors with types S0 and
S1 which are

S0 a = a
S1 a = b → a

so that the overall type Maybe b is encoded as

Maybe b = ∀a. a → (b → a)→ a

There are various special cases of free structures that have special notation. Arbitrary
sized products and sums are special cases of free structures, the types of which we write
as (A,B ,C , . . .) and A + B + C . . . respectively. There are also a couple interesting
degenerate cases. A free structure with one data constructor with no parameters is
encoded using type ∀c.c → c and we sometimes write it as type 1. Similarly, a free
structure with no data constructors is encoded using type ∀c.c and we write it as type
0. There are no terms of type 0 and there is exactly one term of type 1 (namely the
polymorphic identity function). The types 0 and 1 are the initial and final types in the
category of types and functions4. Where we need to write the term of type 1 we use 1,
that is we write 1 :: 1.

The really interesting encodings are for inductive data structures such as natural numbers,
lists and trees. These are also cases of free structures.

Recall that a free structure D has constructor functions fi with types Si of the form

Si = Ti ,0 → Ti ,1 → . . .→ Ti ,ki → D

The definition of a free structure allows D to occur in the types Ti ,j . This is subject to
the restriction that D only appears in positive positions, meaning to the left of an even
number of function arrows.

There is no special change in the System F encoding for a free structure with positive
occurrences of D in the types Ti ,j – all occurrences of D in the types Si are replaced by
the type variable a.

D = ∀a. S0 [D := a ]→ S1 [D := a ]→ . . .→ Sn [D := a ]→ a

The most famous example of this kind of free structure is the Peano natural numbers.
We can define the free structure Nat with two data constructors

Zero :: Nat
Succ :: Nat → Nat

4For this reason some authors write the types 0 and 1 as ⊥ and ⊤ respectively.
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The corresponding encoding is exactly the standard Church encoding of the natural
numbers.

Nat = ∀a.a → (a → a)→ a

We can also give lambda terms for the data constructors

Zero :: Nat
Zero = Λa → λz → λs → z

Succ :: Nat → Nat
Succ n = Λa → λz → λs → s (n a z s)

The notion and notation of free structures is very useful in programming. The form of
data definitions in languages like ML and Haskell strongly resembles free structures. A
downside of the ML, Haskell and free structure presentation of data is that it is hard to
write generic functions that can work for any choice of data structure. For example, the
type of the natural fold function the is rather different for each free structure.

foldMaybe :: ∀a.a → (b → a)→ Maybe b → a

foldNat :: ∀a.a → (a → a)→ Nat → a

To describe it generally we have to use an unsatisfying imprecise “...” notation

foldD :: ∀a. S0 [D := a ]→ S1 [D := a ]→ . . .→ Sn [D := a ]→ D → a

and remember that there is another “...” within each Si as the number of arguments for
each data constructor is different for different free structures.

2.2.3 Describing data via functors

An alternative presentation of free structures is using functors5.

A functor describes a single ‘level’ of a recursive data structure. The type parameter is
used in the position(s) where there are recursive occurrences of the same data type. For
example, one level of the naturals is described by the functor

NatF a = 1+ a

So although each functor is different, there are many definitions we can write that work
for any suitable functor.

The notation µa.F a is used for the type of the encoding of the overall recursive data
structure. This is a variable binding construct, like ∀a.T a or ∃a.T a. It is defined as

µa.F a = ∀a.(F a → a)→ a

It is not immediately obvious that this gives us the same encoding as that for a free
structure. It requires expanding out the definition of the functor and applying some type
isomorphisms.

5More specifically, endo-functors.
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For example, for the functor NatF we define the overall type Nat as

Nat = µa.NatF a

We can expand this out to get the standard type for the Church encoding of natural
numbers

µa.NatF a
= { definition of µa.F a }
∀a.(NatF a → a)→ a

= { definition of NatF }
∀a.((1+ a)→ a)→ a

≡ { distribute, (A+ B)→ C ≡ (A→ C ,B → C ) }
∀a.(1→ a, a → a)→ a

≡ { nullary function, 1→ A ≡ A }
∀a.(a, a → a)→ a

≡ { curry, (A,B)→ C ≡ A→ (B → C ) }
∀a.a → (a → a)→ a

This presentation using a functor is often preferable to the free structure presentation
because we can describe generic functions without having to commit to a specific functor,
i.e. a specific data structure. It is also more concise and does not need to resort to an
imprecise “...” notation. In particular, this presentation lets us define a general fold
function

Definition 2.2.1 (fold for the Church encoding).

fold :: ∀a. (F a → a)→ µb.F b → a
fold = Λa → λ(k :: F a → a)→ λ(x :: µb.F b)→ x a k

Or in an equational style and omitting the explicit typing

fold :: ∀a. (F a → a)→ µb.F b → a
fold a k x = x a k

In addition we can define the build function from the first chapter but now generalised
to any data type that is described by a functor

Definition 2.2.2 (build for the Church encoding).

build :: (∀a.(F a → a)→ a)→ µb.F b
build = λ(g :: ∀a.(F a → a)→ a)→ Λb → λ(k :: F b → b)→ g b k

and in the equational style without explicit typing

build :: (∀a.(F a → a)→ a)→ µb.F b
build g b k = g b k
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2.2.4 The co-Church encoding

The Church encoding looks at recursive data in terms of how we take it apart to produce
some other value. The co-Church encoding takes the dual view, that we look at co-data
in terms of how we can construct it.

The co-Church encoding is also based on a functor F that describes one layer of a data
type we would like to define. The notation νc.F c is used for the type of the encoding of
the overall recursive data structure. It is defined as

νa.F a = ∃a.(a → F a, a)

The intuition is that a data structure represented in this way consists of a ‘seed’ value and
a ‘next’ function. By applying the next function to the seed value we get a single layer
unfolding of the data structure. Occurrences of the functor parameter in this single layer
unfolding correspond to new seed values. We can then apply the same next function to
these new seed values to get the next stage of the unfolding. By repeating this process we
can unfold the data structure indefinitely. Note that due to the existential quantification
the ‘actual’ type of the seed values is hidden, the only information available is given by
the structure of the unfolding.

While the natural operation on data in the Church encoding is a fold , the natural
operation on data in the co-Church encoding is an unfold

Definition 2.2.3 (unfold for the co-Church encoding).

unfold :: ∀a. (a → F a)→ a → νb.F b
unfold = Λa → λ(k :: a → F a)→ λ(s :: a)→ (a, (k , s))

and again with less explicit typing

unfold :: ∀a. (a → F a)→ a → νb.F b
unfold a k s = (a, (k , s))

In addition we can define the unbuild function for any functor

Definition 2.2.4 (unfold for the co-Church encoding).

unbuild :: ∀c. (∀a.(a → F a)→ a → c)→ (νb.F b → c)
unbuild = Λc → λ(g :: ∀a.(a → F a)→ a → c)→

λ(b, (k , s) :: (b → F b, b))→ g b k s

and again with less explicit typing

unbuild :: ∀c. (∀a.(a → F a)→ a → c)→ (νb.F b → c)
unbuild c g (b, (k , s)) = g b k s
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We can use the same functor to give us both the Church and the co-Church encoding.
For example we can use the same NatF functors as before to define the CoNat type

CoNat = νa.NatF a
= ∃a.(a → NatF a, a)
= ∃a.(a → 1+ a, a)

There is a reasonable claim that the CoNat type can represent natural numbers. A value
of this type is of the form (A, (k , s)) for some (unknown) type A. When we apply k to s ,
if the result is in the left side of the sum 1+ a then we have an encoding of the natural
number zero. If the result is in the right side of the sum then we have an encoding of a
number that is the successor to the number encoded as (A, (k , s ′)), where s ′ is the new
seed.

While at first sight it seems that we can represent natural numbers by either the Church
or co-Church encodings, the two are not the same. There is a value of type CoNat that
does not represent any natural number, in particular the value

inf = (1, (λ → right 1, 1))

The next function here always returns in the right side of the sum, hence no matter how
often we chase successors we never get to zero. This value is equivalent to the limit of
the naturals, the simple countable infinity.

There is relationship between the types Nat and CoNat . We can write an injective
function mapping Nat and CoNat , so all values of Nat have a corresponding value of
type CoNat . On the other hand we know that CoNat has at least one more value in it
than Nat hence we cannot write a injective function in the other direction.

2.2.5 Abstract semantics

For binary products and sums the abstract semantics are relatively easy to state and it is
not too tricky to prove that the encodings for binary products and sums in Section 2.2.1
do indeed implement the abstract semantics. So far, for data µa.F a and co-data νa.F a
types we have given the encoding but not yet specified the abstract semantics.

It turns out that the appropriate semantics for data and co-data defined by a functor F
uses initial F-algebras and final F-co-algebras respectively. F-algebras and F-co-algebras
are yet more concepts from category theory. We will cover this in greater detail in the
next chapter since it is vital to the proofs for shortcut fusion.

This semantics of data and co-data using initial algebras and final co-algebras is exactly
the semantics that Hagino (1987) requires of a categorical programming language. Wraith
(1989) gives the System F encodings for µa.F a and νa.F a and shows that they are
weakly initial F-algebras and weakly final F-co-algebras. Hasegawa (1991) proves the
same encodings are strongly initial and final if the semantic model is parametric.

This combination of results serves to emphasise the point that these two forms of recursive
data structure are canonical. It also goes some way to explaining why these two views of
data are natural choices for the basis of shortcut fusion systems – in contrast with the
many choices of ad hoc shortcut fusion system (as discussed in Section 1.3.4).
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2.3 CPOs

If functional programmers are Platonists, then when writing a function the platonic
object the programmer has in mind is probably a set-theoretic function. The meaning of
programs in simply-typed lambda calculus can be described using ordinary set theory.
However most interesting extensions of lambda calculus cannot be fully described by set-
theoretic functions6. Domain theory was invented to explain the semantics of functional
programming languages that use partial functions and general recursion.

In domain theory, complete partial orders (CPOs) describe the range of values that
can be computed. These values are related to each other by a partial ordering (⊑).
The ordering describes how ‘defined’ a value is, or to put it another way, how much
information we know about a value. CPOs have a bottom element, written ⊥, that is less
defined than all other values of the same type. This ‘undefined’ value is used to describe
values about which we know nothing, such as the ‘result’ of non-terminating evaluation.

One can use CPOs as a semantic model for System F, however one typically does not, at
least not for unadulterated System F, because the range of values in the semantic model
is greater than the ones that can be described by terms in the language. In particular
since System F is strongly normalising there are no terms that correspond to the ⊥
element in the CPO semantic model.

The main purpose in using CPOs as a semantic model is to change the System F syntax
by adding a fixpoint combinator as an additional constant

fix :: ∀a. (a → a)→ a

with the reduction rule

fix f = f (fix f )

Of course this means the strong normalisation property is lost as the fixpoint combinator
makes it possible to write terms with no normal form such as fix id .

When using the CPO model we will write recursive definitions of the form

f = . . . f . . .

which are to be interpreted as uses of the fix combinator

f = fix (λf ′ → . . . f ′ . . .)

The basic proof method for programs that use the fix combinator is fixpoint induction.

Property 2.3.1 (Fixpoint induction proof scheme). For a continuous function h and a
chain-complete property P

P ⊥ ∧ ∀g . P g ⇒ P (h g)
=⇒
P (fix h)

6At least not ordinary ZF set theory. There are some alternative approaches based on intuitionistic
set theory. Rosolini and Simpson (2004) give a recent and reasonably accessible presentation of this
approach.
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All functions definable in the language are continuous. Similarly, checking that a predicate
is chain complete is usually easy, as all equations between functions definable in the
language are chain complete.

Applying this proof scheme requires first that we arrange for the property we wish to
prove to be an instance of the conclusion of the proof scheme P (fix h). In particular this
means identifying a function within the property that is defined in terms of fix . Having
set up the property P , the next step is to prove P ⊥ and P g ⇒ P (h g). The first
is usually straightforward and the latter we usually approach by starting with P (h g)
then unfolding definitions, splitting into cases as necessary and at some point using the
induction hypothesis P g .

The existence of a ⊥ element weakens many properties that hold in System F. While
the encodings of sums and products still work, they are no longer categorical sums or
products. This is because it is no longer true that all values in the sum/product type
correspond to actual sum/product terms, in particular ⊥ does not.

There are also some slightly unexpected consequences of adding ⊥ and a fixpoint combi-
nator. For example, not only does the Nat bottom type have a ⊥ value, it also has all
the partial naturals and an upper limit. The partial naturals are the following terms,
related by the partial ordering

⊥ ⊑ Succ ⊥ ⊑ Succ (Succ ⊥) ⊑ . . .

Since these form an ascending chain then the CPO properties mean that we must also
have a value that is the upper limit of this chain. Indeed using fix we can define a term
that is this limit

infinity :: Nat⊥
infinity = fix (λinf z s → s (inf z s))

There are similar partial naturals in the CoNat⊥ encoding and of course it already had
an upper limit. The previous natural injections from Nat to CoNat still work with the
new partial naturals. Furthermore, using fix it is now possible to write an injective
function from CoNat⊥ to Nat⊥

7.

As mentioned in the previous section, a parametric semantics of System F has initial
F-algebras and final F-co-algebras. Domains also have initial F-algebras and final F-co-
algebras. For initial F-algebras however this is restricted to domains with strict functions.
Final F-co-algebras are not similarly restricted; they exist in domains with strict and
non-strict functions (Abramsky and Jung, 1995, Section 5.3.2). As is suggested by our
ability to convert CoNat⊥ to Nat⊥, the initial F-algebras and final F-co-algebras are
isomorphic, though only for domains with strict functions.

The fact that the Church and co-Church encodings of data are isomorphic in CPOs
sometimes leads people to believe that the distinction is unimportant. The fact that they
are isomorphic says very little about performance, which is after all the goal of fusion.
Standard functional languages such as ML and Haskell provide data that implements

7by mapping the CoNat⊥ infinity (1, (λ → right 1, 1)) to the Nat⊥ infinity fix (λinf z s →
s (inf z s))
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the semantics of both encodings in a single representation. Thus there is no conversion
cost to constructing a data structure using an unfold and then consuming it using a fold.
However this does not mean that we can magically fuse a fold with an unfold; the Church
or co-Church view of the data is still important.

2.4 Haskell

At the time of writing, Haskell (Peyton Jones et al., 2003) is the standard pure non-strict
functional programming language. It is a practical programming language and while its
semantics are not completely precisely specified, they are based on CPOs.

Haskell is statically typed. The type system of Haskell 98 is based on the Hindley-Milner
type system, with extensions for type classes and polymorphic recursion. Terms and
types in Haskell can be translated8 into System F extended with a fixpoint combinator
and using a CPO semantics.

In Haskell 98, polymorphic functions are given types where the free variables are implicitly
universally quantified over. For example the identity function is written as

id :: a → a
id x = x

A common extension which we will make use of is to make the universal quantifier explicit

id :: ∀a. a → a

Haskell makes almost full use of the fact that its semantics is based on CPOs by providing
the function seq which has the property:

seq ⊥ x = ⊥
seq y x = x { where y is not ⊥ }

Although this function cannot be defined using the term language, its meaning is perfectly
reasonable within the CPO semantics. In particular seq makes clear that the function
type in Haskell is lifted.

As mentioned, Haskell is a relatively large and complex language and does not have a
completely formally specified semantics. In the theory chapter where we are using Haskell
we will try wherever possible to stick to the simple subset that is easily translated into
the extended System F. In particular we will make use of algebraic data types, their data
constructors and case deconstructors.

Where it helps the presentation however we will make use of some of Haskell’s syntactic
sugar. In particular we will make use of patterns and guards in the left hand side of
function definitions; these desugar into case expressions. We will also use where clauses
for local definitions which desugar into let expressions.

8More specifically, System Fω is required since Haskell has higher kinds.
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We will make use of an language extension that lets us use existential types. Existen-
tial types are not supported as first class, instead only data constructors can contain
existentially typed values. We use the following form of syntax9

data P = ∃a.MkP a (a → Bool)

Here we have a type P with a single data constructor MkP . This data type is equivalent
to ∃a.(a, a → Bool). The type of the MkP constructor function is universally quantified
but the type variable does not appear in the result type P

MkP :: ∀a.a → (a → Bool)→ P

It should be noted that in future it may become standard practice in Haskell to write
existential types using GADT syntax. The above example may be written using GADT
syntax as

data P where
MkP :: ∀a.a → (a → Bool)→ P

When describing syntactic transformations it is occasionally helpful to explicitly distin-
guish variables in the concrete syntax from metavariables that stand for whole terms,
particularly where those terms may contain free variables. In Chapter 4 we will use the
syntax ⟨x ⟩ to denote a metavariable that stands for some term.

9The common language extension actually uses the syntax ‘forall’ rather than ‘exists’. The ‘forall’
syntax emphasises the type of the data constructor itself rather than the type of the contained data.



Chapter 3

Stream fusion is correct

In this chapter we will look at the theoretical basis for the correctness of shortcut fusion
in general and stream fusion in particular.

3.1 Introduction and strategy

We want to prove that stream fusion is valid. That means we must justify transformations
of the form

unstream ◦ fs ◦ stream ◦ unstream ◦ gs ◦ stream
= { “stream fusion” }

unstream ◦ fs ◦ gs ◦ stream

We must be precise both about the kinds of streams we are working with, skipping or
non-skipping, and the language and semantic domain we are working in. There are three
cases that we are interested in:

• non-skipping streams in System F, with a parametric semantic model;

• non-skipping streams in Haskell, using CPOs;

• skipping streams in Haskell, using CPOs.

These cases are in order of increasing realism but the results we can hope to obtain are
decreasingly powerful. We can expect to obtain a much stronger result with non-skipping
streams in System F than we can with skipping streams in Haskell. On the other hand,
ultimately we wish to apply this transformation in practice in the context of Haskell. It
is worth asking which cases are really worth considering separately and which as part of
the next, more general but weaker, case.

It is instructive to start with non-skipping streams in the simpler setting of System F.
The semantic domain for System F is more favourable for our purposes than Haskell’s
CPO-based semantics. Indeed for System F the result we want is already present in the
literature. In System F we will take an approach based on parametricity. The initial
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approach will be to prove that stream ◦ unstream = id as this gives a straightforward
justification of the stream fusion transformation.

When we move on to CPOs we will demonstrate a weaker, yet sufficient, result that
does not rely on parametricity. In our final setting we allow streams to skip and this
has the consequence that stream ◦ unstream = id is no longer true. We can still justify
the stream fusion transformation however. To do so we have to use a slightly weaker
property and add side conditions on fs and gs .

Our strategy for the two Haskell cases is to tackle the more general case of skipping
streams since any proof technique for the skipping should be easily adaptable to cover
the non-skipping case. We will not attempt to find a stronger result in the non-skipping
case. That is, we will not attempt to prove stream ◦ unstream = id for non-skipping
streams in the CPO setting. While it may be possible to obtain such a result using
techniques demonstrated by Johann (2003) (using an operational model of Haskell without
polymorphic seq), it would be of little practical use and probably would not provide any
more theoretical insights than the stronger result in System F.

We will show that a sufficient condition for the fusion transformation, even in the skipping
case, is that each stream function fs and its ordinary list counterpart f satisfy

unstream ◦ fs = f ◦ unstream

We must in any case prove a property like this for each stream function in our library.
We need this simply to be sure that the stream version really does correspond to the
list version. Strictly speaking, merely to show the correspondence between the stream
and list versions it would be sufficient to show f = unstream ◦ fs ◦ stream; however, the
formulation above is slightly stronger and it is sufficient to justify the stream fusion
transformation.

While in practice we have only implemented the stream fusion system for sequences, in
principle it should work for any co-data1. For most of the proofs in this chapter we will
use the greater generality obtained by working with data and co-data in terms of an
arbitrary functor F . The primary motivation for generalising to an arbitrary functor is
to simplify the proofs. The results for lists can be obtained by substituting in the list
functor.

The remainder of this chapter is organised as follows:

• We will start in Section 3.2 by considering shortcut fusion in the setting of Sys-
tem F. We will see that when using the Church and co-Church encodings directly,
correctness proofs of fusion are almost embarrassingly trivial.

• In Sections 3.3 and 3.4 we use the abstract definition of data and co-data rather
than specific encodings. In this context can prove the two shortcut fusion rules by
taking advantage of parametricity.

• In Section 3.5 we build on the proof of the unfold/unbuild fusion rule in System F
and find that the stream fusion rule is a simple extension – at least for streams
without skip.

1It is not clear however that there would be any performance benefits for non-sequence types.
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• In Section 3.6 we look at the more complicated case of streams with skip but find
that System F is not the appropriate model for describing skipping streams.

• In Section 3.7 we move from System F to a semantics based on CPOs and look at
streams in this new context.

• In Section 3.8 we look at the fusion rule for skipping streams in the CPO context.
While we can still prove the transformation is correct we find that we need side
conditions on the library functions involved.

• In Section 3.9 we look at how to prove that library functions satisfy the side
conditions identified in the previous section. We go through the details of fixpoint
induction proofs for a number of standard functions and give some heuristics for a
general method.

• While the earlier sections look at lists or more generally data and co-data, in
Section 3.10 we look at stream fusion for abstract data types. In particular we
look at what properties an ADT must have for us to be able to use stream fusion
correctly. We sketch proofs for the specific example of arrays.

• Finally in Section 3.11 we look at a testing technique suitable for stream fusion
implementations. This can give us a limited degree of confidence in our imple-
mentations with a substantially lower effort compared to the formal proofs of
Section 3.9.

3.2 Fusion with the Church and co-Church encod-

ings

We have seen (in Sections 2.2.3 and 2.2.4) that with the Church and co-Church encodings
of data and co-data that we can write very simple definitions of the functions fold , unfold ,
build and unbuild . It should not surprise us therefore that in this setting the fusion rules
fold/build and unbuild/unfold are similarly trivial. Let us see just how trivial.

Recall (from Section 2.2.3) the definition of the Church encoding of µa.F a and the
general fold and build for a data type functor F

µa.F a = ∀a.(F a → a)→ a

fold :: ∀a. (F a → a)→ µb.F b → a
fold a k x = x a k

build :: (∀a.(F a → a)→ a)→ µb.F b
build g b k = g b k

Theorem 3.2.1 (fold/build fusion rule with Church encoding).

fold a k (build g) = g a k
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Proof. It follows directly from the definitions

fold a k (build g)

= { by definition of fold }
(build g) a k

= { by definition of build }
g a k

Similarly for νa.F a, unbuild and unfold (from Section 2.2.4)

νa.F a = ∃a.(a → F a, a)

unfold :: ∀a. (a → F a, a)→ νb.F b
unfold a k s = (a, (k , s))

unbuild :: ∀c. (∀a.(a → F a, a)→ c)→ (νb.F b → c)
unbuild c g (b, (k , s)) = g b k s

Theorem 3.2.2 (unbuild/unfold fusion rule with Church encoding).

unbuild c g (unfold a k s) = g a k s

Proof. Again, it follows directly from the definitions

unbuild c g (unfold a k s)

= { by definition of unfold }
unbuild c g (a, (k , s))

= { by definition of unbuild }
g a k s

3.3 Fusion with initial data

We see that with the Church and co-Church encodings the standard shortcut fusion
rules are trivially true. A more interesting result is to show that the same equations
hold not just for some specific encoding but for any correct implementation of data or
co-data, purely from the required semantics of data and co-data. Such a result is of
practical significance because in a programming language based on System F we do
not use the Church encoding of data and co-data but instead use an equivalent, more
efficient machine representation. We would like any fusion results to hold for the efficient
representation too.

To be able to decide if an implementation of data or co-data is correct requires that
we have an abstract semantics of data and co-data. As mentioned in Section 2.2.5,
the appropriate semantics for data and co-data is initial algebras and final co-algebras
respectively. The details are given by Wadler (1990a) but we will give a short presentation
here.
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3.3.1 Initial data

For both data and co-data we start with a functor F . A standard example is the functor
for lists (with element type e):

ListF e a = 1+ (e, a)

For data, we call the abstract type µa.F a though we will sometimes abbreviate it to
simply T . The abstract type has functions

in :: F T → T

out :: T → F T

These essentially wrap and unwrap a single layer of the data structure. We have not
stated all the required properties yet, but it is worth noting that a consequence of the
properties is that in and out are mutual inverses and that therefore F T and T are
isomorphic. This is why we say that T is a fixpoint of F .

The other required operation is fold :

fold :: ∀a. (F a → a)→ T → a

The property of being an initial algebra is stated in terms of concepts from category
theory. In our context of types and functions, an algebra for the functor F is a pair (A, k)
consisting of a type A and a function k :: F A → A. An initial algebra is an algebra
that is initial in the category of F-algebras, meaning there is a unique mapping from the
initial algebra to all the other F-algebras. A mapping in the category of F-algebras, say
from (A, k) to (A′, k ′) is a function h :: A→ A′ that satisfies the property

h ◦ k = k ′ ◦ F h

In the case of data T for a functor F we require that (T , in) is the initial algebra. This
means there must be a mapping h from (T , in) to any other F-algebra (A, k) and that
the mapping must be unique. The mapping in question is fold A k . The statement of
this fact is called the universal property of fold .

Property 3.3.1 (Universal property of fold).

h ◦ in = k ◦ F h
⇐⇒
h = fold A k

Now that we are armed with the abstract semantics of data there are two things to do.
We must check that the Church encoding satisfies the property. Then, using just the
abstract semantics, we wish to prove that the fold/build property holds. First however
we take a brief explanatory diversion.
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3.3.2 Universal property of fold for lists

Stated in the above form, the universal property is rather abstract. It is instructive to
derive the familiar universal property for fold on lists by specialising the above property
for the list functor. Some readers may choose to skip this diversion.

Since the purpose is to derive the familiar we will use Haskell’s data type syntax instead
of using the Church encoding. We will represent the list functor ListF e a = 1+ (e, a)
in Haskell types as

type ListF e a = Maybe (e, a)

Thus for F and T we substitute ListF e (for some e) and [e ] respectively.

The function in :: F T → T will be

in :: ListF e [e ]→ [e ]
in Nothing = [ ]
in (Just (x , xs)) = x : xs

Next we specialise h ◦ in = k ◦ F h. Since we are using Haskell, we write F h as fmap h.
Note that the argument type of each side is ListF e [e ] so without loss of generality we
can apply both sides to values Nothing and Just (x , xs):

h ◦ in = k ◦ fmap h
⇐⇒
h (in Nothing) = k (fmap h Nothing)
h (in (Just (x , xs))) = k (fmap h (Just (x , xs)))

We can simplify both cases since we have a definition for in and the definition of fmap
on ListF a is straightforward. For the two cases on the left hand side we have

h (in Nothing)
= { since in Nothing = [ ] }

h [ ]

and

h (in (Just (x , xs)))
= { since in (Just (x , xs)) = x : xs }

h (x : xs)

And similarly on the right hand side

k (fmap h Nothing)
= { since fmap h Nothing = Nothing }

k Nothing

and

k (fmap h (Just (x , xs)))
= { since fmap h (Just (x , xs)) = Just (x , h xs) }

k (Just (x , h xs))
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If we put these together we get

h [ ] = k Nothing
h (x : xs) = k (Just (x , h xs))

We can obtain a more standard presentation by defining:

z = k Nothing
f x xs = k (Just (x , xs))

and thus we get

h [ ] = z
h (x : xs) = f x (h xs)

This gives us the standard form of the universal property on lists, that if h satisfies the
above equations then it is equal to fold k , or equivalently, to foldr f z .

3.3.3 Church encoding is initial in parametric models

We should check that the Church encoding of data satisfies the abstract semantics of
data, i.e. the universal property of fold

h ◦ in = k ◦ F h
⇐⇒
h = fold A k

Again we follow the presentation of Wadler (1990a). There are two parts to prove. The
easier part is to check that fold A k is a function h that satisfies h ◦ in = k ◦ F h. The
second part is to show that fold A k is the only such function.

Recall that the Church encoding represents data defined by a functor F using terms of
the type ∀a.(F a → a)→ a. Thus in this context we use

T = µa.F a = ∀a.(F a → a)→ a

Lemma 3.3.2. h = fold A k =⇒ h ◦ in = k ◦ F h

Proof. Performing the substitution for h and applying both sides to an arbitrary y gives
us the equivalent goal of showing

fold A k (in y) = k (F (fold A k) y)

We will define suitable lambda terms for in and fold and then use the ordinary reduction
rules to show the terms on each side are equal.

For the Church encoding we define fold and in as

fold :: ∀a. (F a → a)→ T → a
fold a k x = x a k

in :: F T → T
in y b k = k (F (fold b k) y)
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We now simplify the left hand side until it matches the right

fold A k (in y)

= { unfold definition of in }
fold A k (λa k → k (F (fold a k) y))

= { unfold definition of fold }
(λa k → k (F (fold a k) y)) A k

= { β-reduce }
k (F (fold A k) y)

To show that fold A k is the unique function h satisfying h ◦ in = k ◦ F h, we cannot use
a simple syntactic proof. The proof relies on properties of the semantic model that we
are using. In particular it is sufficient that the semantic model has the parametricity
property.

Lemma 3.3.3. h ◦ in = k ◦ F h =⇒ h = fold A k

Proof. We start with the free theorem for the type of fold

h ◦ k ′ = k ◦ F h =⇒ h ◦ fold A′ k ′ = fold A k

We are free here to pick h, k and k ′ as we choose. Substituting k ′ := in,A′ := T gives us

h ◦ in = k ◦ F h =⇒ h ◦ fold T in = fold A k

If we can show that fold T in = id T then we are left with

h ◦ in = k ◦ F h =⇒ h = fold A k

which would complete the proof. We can prove fold T in = id T as follows. We again
take the free theorem for the type of fold and substitute h := fold A k and k ′ = in,A′ :=T

fold A k ◦ in = k ◦ F (fold A k) =⇒ fold A k ◦ fold T in = fold A k

We can discharge the antecedent because it is a statement of the previous lemma, leaving
us with just

fold A k ◦ fold T in = fold A k

We now calculate

fold A k ◦ fold T in = fold A k

=⇒ { η-expand }
fold A k (fold T in x ) = fold A k x

=⇒ { by definition fold a k x = x a k }
fold T in x A k = x A k

=⇒
fold T in = id T
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3.3.4 fold/build holds for initial data in parametric models

So we have seen that the fold/build property holds for the Church encoding and that
the Church encoding does give us initial algebras in parametric models. We want to be
sure that the fold/build property holds for any implementation of data, which means
proving the property from the abstract semantics of data, without assuming any specific
encoding.

Recall the fold/build fusion property:

fold a k (build g) = g a k

Let us state our assumptions precisely. We are working from the abstract semantics of
initial data µa.F a for a covariant functor F . Again we use the alias T = µa.F a. It
being initial data gives us the abstract terms

fold :: ∀a. (F a → a)→ T → a

in :: F T → T

and the universal property of fold

h ◦ in = k ◦ F h
⇐⇒
h = fold A k

We also have the assumption that we are working in a parametric model.

The properties of initial data give us fold directly but we must define build in terms of
the functions we have to hand, namely in, out and fold . We use the following definition

build :: (∀a.(F a → a)→ a)→ T
build g = g T in

One may reasonably wonder how we conjure this definition of build and whether it
is a sensible definition. The technique is to ‘guess then check’. We guess based on
the structure of the type. We will then check that the fold/build property using this
definition. If the property holds then we know that this is a suitable definition of build .

Theorem 3.3.4 (fold/build fusion for initial data).

fold a k (build g) = g a k

Proof. We naturally start off by unfolding definitions

fold a k (build g)
= { definition of build }

fold a k (g T in)

The difficulty at this step is that we do not know much about g . In fact the only thing
we know about g is its type. This is where we must rely on the assumption that we are
using a semantic model with the parametricity property. We can apply parametricity to
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give us a property about g purely from its type; the free theorem for g (see Section 2.1.3
for an introduction to free theorems).

We will state the free theorem for g and derive it later as a separate lemma.

g :: ∀a.(F a → a)→ a

h :: A′ → A
k :: F A → A
k ′ :: F A′ → A′

h ◦ k ′ = k ◦ F h =⇒ h (g A′ k ′) = g A k

So this tells us what we know about g , given only its type. Note that for convenience in
the next step we have alpha-renamed the free variables A / A′ and k / k ′ compared to
the natural naming order.

We return to where we had got stuck with unfolding definitions. It remains to show that

fold a k (g T in) = g a k

Fortunately, if we do a little pattern matching we can see that, with the right substitution,
this matches the consequent of the free theorem for g , namely h (g A′ k ′) = g A k . The
appropriate substitutions are

h := fold a k
A := a
k ′ := in
A′ := T

Let us perform the substitution

(h ◦ k ′ = k ◦ F h =⇒ h (g A′ k ′) = g A k) [h := fold a k ,A := a, k ′ := in,A′ := T ]
≡
fold a k ◦ in = k ◦ F (fold a k) =⇒ fold a k (g T in) = g a k

Since the consequent matches our goal, we now just need to show that

fold a k ◦ in = k ◦ F (fold a k)

which is of course a simple consequence of the universal property of fold .

Note that if we are using the Church encoding specifically then we have a simple corollary

fold a k (g T in) = g a k
⇐⇒ { by definition of fold a k x = x a k }

(g T in) a k = g a k

This justifies our original definition of build g = g for the special case of the Church
encoding rather than the general build g = g in.
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Lemma 3.3.5. Free theorem for g :: ∀a.(F a → a)→ a

Proof. We must first give the relation corresponding to this type. It is built using the →
and ∀ connectives.

We start by writing down the parametricity property for g and then unfolding the
membership definition for the relation corresponding to the type of g

(g , g) ∈ ∀X .(F X → X )→ X
⇐⇒ { by membership definition for a ∀ relation }

for all A :: A↔ A′,
(g A, g A′) ∈ (F A → A)→ A

⇐⇒ { by membership definition for a (→) relation }
for all A :: A↔ A′,
for all (k , k ′) ∈ F A → A,
(g A k , g A′ k ′) ∈ A

We can go one step further for the part concerning (k , k ′):

(k , k ′) ∈ F A → A,
⇐⇒ { by membership definition for a (→) relation }

for all (x , x ′) ∈ F A,
(k x , k ′ x ′) ∈ A

So the property as a whole is

for all A :: A↔ A′,
for all k :: F A→ A, k ′ :: F A′ → A′,
(for all (x , x ′) ∈ F A,
(k x , k ′ x ′) ∈ A)

=⇒
(g A k , g A′ k ′) ∈ A

Now instead of a relation A :: A ↔ A′ we want to specialise to a function h :: A → A′.
Where we had (x , x ′) ∈ A we now get h x = x ′ and for (x , x ′) ∈ F A we now get
F h x = x ′.

for all h :: A→ A′,
for all k :: F A→ A, k ′ :: F A′ → A′,
(for all x :: A,
F h x = x ′ =⇒ h (k x ) = k ′ x ′)

=⇒
h (g A k) = g A′ k ′

We can simplify the inner part slightly by substituting x ′ and using function composition

F h x = x ′ =⇒ h (k x ) = k ′ x ′)
⇐⇒
h (k x ) = k ′ (F h x )
⇐⇒
h ◦ k = k ′ ◦ F h
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We can now present the free theorem for g in a slightly more comprehensible fashion:

g :: ∀a.(F a → a)→ a

h :: A → A′

k :: F A → A
k ′ :: F A′ → A′

h ◦ k = k ′ ◦ F h =⇒ h (g A k) = g A′ k ′

3.4 Fusion with final co-data

The dual of data is co-data. While the abstract semantics of data uses initial algebras,
the abstract semantics of co-data uses final co-algebras. In this section we give a short
presentation of co-data, following that of Wadler (1990a); we check that the co-Church
encoding satisfies the abstract semantics for co-data; finally we prove the unfold/unbuild
property holds for final co-data in a parametric model.

3.4.1 Final co-data

For co-data, as with data, we start with a functor F. We continue to use the list functor
as an example.

ListF e a = 1+ (e, a)

While with data this functor gave us finite lists, with co-data we will get potentially-infinite
lists.

For co-data, given a functor F we call the abstract type νa.F a. As before, we will
abbreviate this as T . As with data, the abstract semantics for co-data is specified in
terms of the existence of certain operations and properties the operations satisfy. We get
in and out functions

in :: F T → T

out :: T → F T

We also get an operation unfold

unfold :: ∀a. (a → F a)→ a → T

The unfold and out functions are required to satisfy the final co-algebra property, which
we will now state. A co-algebra for the functor F is a pair (A, k) consisting of a type A
and a function k ::A→ F A. A final co-algebra is a co-algebra that is final in the category
of F-co-algebras, meaning that there is a unique mapping from all F-co-algebras to the
final co-algebra. A mapping in the category of F-co-algebras, say from (A, k :: A→ F A)
to (A′, k ′ :: A′ → F A′) is a function h :: A→ A′ that satisfies the property

F h ◦ k = k ′ ◦ h
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For co-data T for a functor F we require that (T , out) is the final co-algebra. This mean
there must be a unique mapping from any F-co-algebra, say (A, k) to the final co-algebra
(T , out). This mapping is given by unfold k . Plugging this into the above property gives
us the statement of the universal property of unfold

Property 3.4.1 (Universal property of unfold).

F h ◦ k = out ◦ h
⇐⇒
h = unfold A k

3.4.2 Universal property of unfold for lists

Again, it helps ones understanding to see what the universal property of unfold looks
like in the concrete case of lists. Readers familiar with co-data may choose to skip this
section.

As before we will represent the list functor ListF e a = 1+ (e, a) in Haskell types as

type ListF e a = Maybe (e, a)

So F is replaced by ListF e and T by [e ].

The function out :: T → F T will be

out :: [e ]→ ListF e [e ]
out [ ] = Nothing
out (x : xs) = Just (x , xs)

We now specialise F h ◦ k = out ◦ h, again writing F h as fmap h. Previously when we
looked at the universal property of fold on lists we were able to split on the Nothing
and Just cases of the argument type. Here we must split on the cases of the result.
Both functions F h ◦ k and out ◦ h have the result type ListF e [e ] so (without loss of
generality) we can split on the case that the result is of the form Nothing or Just (x , xs):

F h ◦ k = out ◦ h
⇐⇒

Nothing = fmap h (k s) = out (h s)
∨ Just (x , xs) = fmap h (k s) = out (h s)

We can simplify both cases since we know the definition of out and fmap for the ListF e
functor. In the Nothing case

Nothing = fmap h (k s)
⇐⇒
Nothing = k s

and

Nothing = out (h s)
⇐⇒
h s = [ ]
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And in the Just (x , xs) case

Just (x , xs) = fmap h (k s)
⇐⇒
k s = Just (y , ys) ∧ y = x ∧ xs = h ys

and

Just (x , xs) = out (h s)
⇐⇒
(x : xs) = h s

If we combine and simplify the resulting conjunction of conditions we get

k s = Just (y , ys) ∧ y = x ∧ xs = h ys ∧ h s = (x : xs)

⇐⇒ { substitute y := x }
k s = Just (x , ys) ∧ xs = h ys ∧ h s = (x : xs)

⇐⇒ { substitute xs := h ys }
k s = Just (x , ys) ∧ h s = (x : h y)

⇐⇒ { α-rename ys to s ′ }
k s = Just (x , s ′) ∧ h s = (x : h y)

If we put this all together we get

h s = [ ] ⇐⇒ k s = Nothing
∧
h s = x : h s ′ ⇐⇒ k s = Just (x , s ′)

Of course the standard way to express these conditions in Haskell syntax is using a case
expression:

h s = case k s of
Nothing → [ ]
Just (x , s ′)→ x : h s ′

The ‘if’ and ‘only if’ directions hold because the patterns and result have disjoint structure
(corresponding to the fact that in and out are bijective and mutual inverses).

Thus overall, the universal property for unfold for lists is

h s = case k s of
Nothing → [ ]
Just (x , s ′)→ x : h s ′

⇐⇒
h = unfold k

which, fortunately, is the standard2 way the property is presented.

2Some alternative but equivalent presentations in the literature (e.g. Gibbons and Jones, 1998) split
the unfold argument function a → Maybe (b, a) into separate functions a → Bool , a → b and a → a.
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3.4.3 co-Church encoding is final in parametric models

We must check that the co-Church encoding of co-data satisfies the abstract semantics
we specified above, namely the universal property of unfold :

F h ◦ k = out ◦ h
⇐⇒
h = unfold A k

We will consider each direction as separate lemmas. The easier direction is to check that
unfold A k is indeed a function h satisfying F h ◦ k = out ◦ h. We can do this purely
syntactically by plugging in the definitions of out and unfold . The harder direction is to
show that unfold k is the unique function h satisfying the equation. As with the proof in
the previous section for data and fold , this proof relies on us using a parametric model
for System F.

Recall that the co-Church encoding represents co-data defined by a functor F using
terms of the type ∃a.(a → T a, a). Thus in this context we use

T = νa.F a = ∃a.(a → F a, a)

For terms with existentially quantified types we use the syntactic sugar from Section 2.1.4.
In particular if t :: ∃a.(a → F a, a) then we may match t against (a, (k , s)) with types
k :: a → F a and s :: a.

Lemma 3.4.2. h = unfold A k =⇒ F h ◦ k = out ◦ h

Proof. We start with lambda terms for unfold and out

unfold :: ∀a.(a → F a)→ a → T
unfold = Λa → λ(k :: a → F a)→ λ(s :: a)→ (a, (k , s))

out :: T → F T
out = λ(a, (k :: a → F a, s :: a))→ F (unfold a k) (k s)

For the sake of presentation we will omit the explicit typing and use

unfold a k s = (a, (k , s))

out (a, (k , s)) = F (unfold a k) (k s)

We substitute these into F h ◦ k = out ◦ h with h := unfold A k and η-expand, applying
both sides to an argument s

F (unfold A k) (k s) = out (unfold A k s)

Starting with the right hand side we unfold definitions

out (unfold A k s)
=
out (A, (k , s))

=
F (unfold A k) (k s)

Until we arrive at the left hand side.
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Lemma 3.4.3. F h ◦ k = out ◦ h =⇒ h = unfold A k

Proof. To show unfold A k is the unique h satisfying F h ◦ k = out ◦ h we must rely on
parametricity. Specifically we use the free theorem for the type of unfold :

F h ◦ k = k ′ ◦ h =⇒ unfold A′ k ′ ◦ h = unfold A k

If we substitute k ′ := out then this very nearly matches our goal

F h ◦ k = out ◦ h =⇒ unfold T out ◦ h = unfold A k

If we can show that unfold T out = id T then we are done. Fortunately we can do just
that. We take the free theorem for unfold again and substitute h := unfold A k and
k ′ := out

F (unfold A k) ◦ k = out ◦ unfold A k =⇒ unfold T out ◦ unfold A k = unfold A k

Of course the antecedent here is just what we showed in the previous lemma so we can
reduce this to just

unfold T out ◦ unfold A k = unfold A k

Now we just reduce this syntactically by η-expanding, unfolding the definition of unfold
and η-reducing again

unfold T out ◦ unfold A k = unfold A k

=⇒ { η-expand, apply to s }
unfold T out (unfold A k s) = unfold A k s

=⇒ { by definition unfold A k s = (A, (k , s)) }
unfold T out (A, (k , s)) = (A, (k , s))

=⇒
unfold T out = id T

3.4.4 unfold/unbuild holds for final co-data in parametric models

Recall the unfold/unbuild property:

unbuild c g (unfold a k s) = g a k s

Our challenge is to prove this from the universal property of unfold and the assumption
that we are working in a parametric model of System F. In particular we do not assume
any concrete structure for the type T = νa.F a or concrete lambda terms for unfold or
out .
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So our assumptions are that we have a covariant functor F , the type alias T = νa.F a,
the abstract terms

unfold :: ∀a.(a → F a)→ a → T

out :: T → F T

the universal property of unfold

F h ◦ k = out ◦ h
⇐⇒
h = unfold A k

and the assumption that we are working in a parametric model.

While we start with an abstract definition of unfold , we must invent a suitable definition
of unbuild . We will use

unbuild :: ∀b.(∀a.(a → F a)→ a → b)→ T → b
unbuild b g t = g T out t

Theorem 3.4.4 (unfold/unbuild fusion for final co-data).

unbuild b g (unfold a k s) = g a k s

Proof. We start by unfolding definitions

unbuild b g (unfold a k s)
=
g T out (unfold a k s)

We cannot get far with unfolding definitions of course as unbuild is the only definition
we know here; all the other terms are free variables or have abstract definitions. To try
and make some progress we turn to the free theorem for the type of g , namely

g :: ∀a.(a → F a)→ a → B

Note that at this point we can treat b as some fixed B , not a polymorphic b. This
is important since the simpler type has a considerably simpler free theorem. The free
theorem for g is

g :: ∀a.(a → F a)→ a → B

h :: A → A′

k :: A → F A
k ′ :: A′ → F A′

F h ◦ k = k ′ ◦ h =⇒ g A k = g A′ k ′ ◦ h

It turns out to be more convenient to η-expand (and flip) this as

F h ◦ k = k ′ ◦ h =⇒ g k ′ (h s) = g k s
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Returning to the point where we got stuck unfolding definitions, it remains to show that

g T out (unfold a k s) = g a k s

This matches the consequent of the free theorem for g if we use the following substitutions

h := unfold a k
A := a
k ′ := out
A′ := T

Performing the substitution, we obtain

(F h ◦ k = k ′ ◦ h =⇒ g A′ k ′ (h s) = g A k s) [h := unfold a k ,
A := a, k ′ := out ,A′ := T ]

≡
F (unfold a k) ◦ k = out ◦ unfold a k =⇒ g T out (unfold a k s) = g a k s

The antecedent F (unfold a k) ◦ k = out ◦ unfold a k is of course a simple consequence of
the universal property of unfold . Thus we have g T out (unfold a k s) = g a k s which
completes the proof.

3.5 Streams without skip

We have seen abstract initial data with its natural accompanying functions fold and
build and we have seen abstract final co-data with its functions unfold and unbuild . So
what of streams?

A note on terminology. Of course the term ‘stream’ refers only to sequences, however
the trick of reformulating unfold/unbuild fusion as stream fusion applies not just for
the list functor but for any functor. In lieu of a better name we will abuse terminology
and refer to the ‘stream form’ of a functor F as Stream F. Readers incensed by this
abuse may simply read this as the ordinary stream, i.e. using the list functor. We do not
especially rely on the extra generality.

3.5.1 Streams without skip are the co-Church encoding

If we start by looking at streams without skip then the stream form of a functor F is
simply the co-Church encoding.

Stream F = ∃a.(a → F a, a)

For example, the ordinary stream using the list functor ListF e a = 1+ (e, a) is

Stream (ListF e) = ∃a.(a → 1+ (e, a), a)
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This corresponds to the definition of non-skipping streams that we gave in the first
chapter, using Haskell syntax

data Stream e = ∃a. Stream (a → Maybe (e, a)) a

The stream and unstream functions are supposed to convert between the ‘ordinary’ co-
data type νa.F a and the stream representation. Of course if we are using the co-Church
encoding to implement νa.F a then stream and unstream are just identity functions. If
however we consider νa.F a as abstract final co-data then we can still implement stream
and unstream trivially in terms of unbuild and unfold . Again, the practical importance
of working from the abstract definition of co-data is that we expect a real programming
language to implement co-data not as the co-Church encoding but using some efficient
machine representation which nevertheless implements the abstract semantics.

Recall the types of unbuild and unfold

unfold :: ∀a. (a → F a)→ a → νb.F b

unbuild :: ∀c. (∀a.(a → F a)→ a → c)→ νb.F b → c

We will define stream and unstream in terms of unbuild and unfold as follows

Definition 3.5.1 (stream and unstream for non-skipping streams).

stream :: νa.F a → Stream F
stream = unbuild (Stream F ) (Λa → λk → λs → (a, (k , s)) )

unstream :: (Stream F )→ νa.F a
unstream (a, (k , s)) = unfold a k s

3.5.2 stream/unstream holds for final co-data in parametric mod-
els

With these definitions of stream and unstream the stream fusion rule is a simple conse-
quence of the unbuild/unfold fusion rule.

Theorem 3.5.2 (Stream fusion for non-skipping streams in System F).

stream ◦ unstream = id (Stream F )

Proof. It is sufficient to show that

stream (unstream (a, (k , s))) = (a, (k , s))

That is, in addition to η-expanding, we can use (a, (k , s)) as the term of the stream type
∃a.(a → F a, a). This is because, in a parametric model, all values of existential type
correspond to some term (A, x ) (See e.g. Plotkin and Abadi, 1993, Section 3, Theorem 7).
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stream (unstream (a, (k , s)) )

= { by definition of unstream }
stream (unfold a k s)

= { by definition of stream }
unbuild (Stream F ) (Λa → λk → λs → (a, (k , s))) (unfold a k s)

= { by unbuild c g (unfold a k s) = g a k s fusion rule }
(Λa → λk → λs → (a, (k , s)) ) a k s

= { by β-reduction }
(a, (k , s))

Note that we have not relied on any concrete definitions of unbuild and unfold , we have
only relied on the unbuild/unfold fusion rule and the definitions of stream and unstream.
Thus since the unbuild/unfold fusion rule holds for final co-data in a parametric model
then the stream/unstream rule does too.

Having shown that stream ◦ unstream is the identity we are half way to confirming
our expectation that Stream F is isomorphic to νa.F a. It just remains to show that
unstream ◦ stream is also the identity.

Lemma 3.5.3. unstream ◦ stream = id (νa.F a)

Proof. The only interesting part of the proof is the use of the fact that since (νa.F a, outF )
is the final F-co-algebra then unfold (νa.F a) outF = id (νa.F a).

unstream (stream x )

= { unfold definition of stream }
unstream (unbuild (Stream F ) (Λa → λk → λs → (a, (k , s)) ) x )

= { unfold definition of unbuild }
unstream ((Λa → λk → λs → (a, (k , s)) ) (νa.F a) outF x )

= { β-reduce }
unstream (νa.F a, (outF , x ))

= { unfold definition of unstream }
unfold (νa.F a) outF x

= { unfold (νa.F a) outF = id (νa.F a) }
x
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3.6 Streams with skip

We now consider streams with skip. As we saw in Section 1.3.8, using the unbuild/unfoldr
fusion system, we cannot effectively fuse functions like filter with standard local trans-
formations. As we saw in Section 1.4.2, adding skip makes the straightforward local
transformation approach work for filter as well.

Thus the reason we wish to add skip is purely practical, not theoretical. Indeed it adds
tiresome complexity to the theory. Adding skip does appear however to be essential so
we must also deal with skip in the theory.

Recall that without skip, the stream form for a functor F is

Stream F = ∃a.(a → F a, a)

To add skip we use an extended functor Skip F which we define as

Skip F a = F a + a

The extra ‘+ a’ corresponds to the additional possibility to skip. Then we define a
skipping stream as the stream form of the extended functor

Stream (Skip F ) = ∃a.(a → Skip F a, a)
= ∃a.(a → (F a + a), a)

For example, with the list functor

ListF e a = 1+ (e, a)

the skip form is

Skip (ListF e) a = (1+ (e, a)) + a

This corresponds to the Haskell Step data type that we introduced in Section 1.4.2.

data Step a s = Done
| Skip s
| Yield a s

The intended meaning of the skipping stream type is to be ‘the same’ as the non-skipping
stream type. The skips should somehow be ignored; values of Stream (Skip F ) that differ
only in the skips are supposed to represent the same value of νa.F a.

The difficulty of course with skipping streams is that they are not isomorphic to the
ordinary co-data νa.F a. Instead we have many values in Stream (Skip F ) that all
represent the same value of νa.F a.

A helpful notion is that of data abstraction: the Stream (Skip F ) type is intended to be
a representation of the abstract type νa.F a. Of course Stream F is also a representation
of νa.F a but a rather simpler one since the types are isomorphic.

To formalise the relationship between skipping streams and the corresponding ordinary
co-data we need an abstraction function and data type invariant. We will postpone
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consideration of whether or not we need a non-trivial invariant. The abstraction function
maps each value of Stream (Skip F ) to the value of νa.F a which it represents. We
will expect the abstraction function to coincide with the unstream function for skipping
streams so we will call the abstraction function unstream

unstream :: Stream (Skip F )→ νa.F a

The abstraction function will have to ‘erase’ all of the skips. The abstraction function
must be surjective and this gives us an equivalence relation Stream (Skip F ). The
equivalence relation relates values of Stream (Skip F ) that map to the same value of
νa.F a, i.e. those that differ only in the skips.

s ≈ s ′ ⇐⇒ unstream s = unstream s ′

An additional burden is that all functions that take a Stream (Skip F ) as input will
have to respect the data abstraction. That is, a function applied to equivalent input
streams should give us the same results. We cannot allow a function operating on
Stream (Skip F ) – that is meant to represent a function on νa.F a – to distinguish values
of Stream (Skip F ) that are indistinguishable in νa.F a.

So the first task is to define the abstraction function. Unfortunately we fall at this first
hurdle; we cannot define the abstraction function in System F. A function that erases
the skips cannot be written. The problem is that, with the way we have formulated
Stream (Skip F ) there can be unbounded sequences of skips. Needless to say, no function
to erase an unbounded sequences of skips can be written in a strongly normalising
language such as System F.

We might consider reformulating the skipping stream type so that it only has finite
sequences of skips. This is possible, by using data for the sequences of skips rather than
co-data

FiniteSkip F a = F (µb.b + a)

Stream (FiniteSkip F ) = ∃a.(a → F (µb.b + a), a)

Though this is possible, it is not useful. Modelling skips as data rather than co-data
would be a move away from what we ultimately want to implement in the real system.
Furthermore, skip is primarily to deal with functions like filter and these cannot be
implemented for co-data in strongly normalising languages. We must conclude that
ordinary System F is not the right framework to use to study skipping streams and that
it is time to move to our next semantic model: CPOs.

3.7 Streams with skip in CPOs

In this section we will use the language we introduced in Section 2.3. It uses the syntax of
System F but with a CPO semantics and a fixpoint combinator as an additional constant
term.

Of course in a CPO the semantics of a stream is changed somewhat. In particular the
CPO semantics allows for partial streams. We can construct a partial stream by having
the stepper function produce ⊥ after some number of unfolding steps.
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In a CPO we can capture the relationship between skipping streams Stream (Skip F )
and ordinary co-data νa.F a. In particular, the previously problematic case of an infinite
sequence of skips can now be mapped to ⊥, giving us partial co-data. We can implement
this mapping using the fixpoint combinator. As mentioned above, the abstraction function
is just unstream on skipping streams

unstream :: Stream (Skip F )→ νa.F a
unstream (a, (k , s)) = unfold a (force a k) s

force :: ∀a.(a → Skip F a)→ (a → F a)
force a = fix (force ′ a)

force ′ a f next = λ(s :: a)→ casesum (next s)
(λ(y :: F a)→ y)
(λ(s ′ :: a) → f next s ′)

We make explicit use of fix because this is the form we need for subsequent syntactic
proofs. It may be helpful however to see an alternative presentation to clarify the meaning

force :: ∀a.(a → Skip F a)→ (a → F a)
force next = λs → case next s of

Left y → y
Right s ′ → force next s ′

The force function converts a stepper function for a skipping stream into a stepper
function for a non-skipping stream. It recurses in the case of skip, hence an unbounded
sequence of skips gives ⊥. The unstream abstraction function is simply the composition of
the unstream function for non-skipping streams with the force conversion from skipping
to non-skipping streams.

The stream function maps νa.F a into Stream (Skip F ). It is straightforward in that it
maps to a stream without any uses of skip. We can define it as

stream :: νa.F a → Stream (Skip F )
stream = unbuild (Stream F ) (Λa → λk → λs → (a, (left ◦ k , s)) )

The only difference with stream for non-skipping streams is the extra composition of
f with left . This lifts the stepper function from a → F a to a → Skip F a, since
Skip F a = F a + a.

As mentioned above, the abstraction function gives us an equivalence relation on
Stream (Skip F ) that describes ‘equivalence modulo skip’. It will be useful to ex-
tend equivalence modulo skip to all types, including those that contain skipping streams
as sub-components. That is, we want an equivalence relation that is ordinary value
equality but that respects the data abstraction for skipping streams. The reason for this
extra generality is that later it will let us write some properties rather more concisely
and with greater generality.

The appropriate formalisation that gives us an equivalence relation with this property is
a logical relation. A logical relation is a relation on values that is made up of a family of
relations, indexed by the type.
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Our types are function types, functorial types like sums and pairs, streams and base
types such as Int .

⋆ ::= ⋆→ ⋆ | F ⋆ | Stream (Skip F ) | Int | . . .

In our case for equivalence we only need a binary relation. We write a RA b for values
a, b :: A that are related by RA which is the member of the family of relations R for the
type A. The relations that make up the family must respect the following property

f RA→B g ⇐⇒ ∀x x ′. x RA x ′ =⇒ f x RB g x ′

That is, the relation for type A → B has to be consistent with the relation for type
A and the relation for type B . For a family of relations that represents equivalence,
this property is just extensional equivalence for functions. We can construct a family of
relations that has this property by specifying the relations for base types and then using
the property above as a definition for all function types.

It is worth noting that we have seen this kind of logical relation before (Section 2.1.3):
the parametricity property is stated as t T t where the binary relation T is constructed
as a logical relation.

Specifically for our ≈ equivalence relation we have the property for function types

f ≈ g ⇐⇒ ∀x x ′. x ≈ x ′ =⇒ f x ≈ g x ′

At skipping stream types we define ≈ to be equivalence modulo skip

s ≈ s ′ ⇐⇒ unstream s = unstream s ′

If our language has any extra atomic types (e.g. machine integers) then ≈ is ordinary
equality at that type. At functorial types such as pairs and sums, ≈ relates values with
the same structure and equivalent components. For example, for pairs we have

(x , y) ≈ (x ′, y ′) ⇐⇒ x ≈ x ′ ∧ y ≈ y ′

This behaviour at functorial types is prescribed since it has to match the behaviour of
the Church encoding which is itself prescribed by the behaviour at function types.

It is worth noting that for types that do not contain the stream type then ≈ is simply =.
We can see this by induction on the structure of a type. It is true by definition for base
types and is preserved for function and other functorial type constructors.

3.8 Fusion for streams with skip

3.8.1 Sufficient conditions for stream fusion

Recall that overall we are trying to prove transformations such as

unstream ◦ fs ◦ stream ◦ unstream ◦ gs ◦ stream
= { “stream fusion” }

unstream ◦ fs ◦ gs ◦ stream
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The property stream ◦ unstream = id is certainly sufficient to prove the transformation.
Unfortunately we know that this property is not true for skipping streams so we are
interested in finding a weaker yet sufficient property. The intuition is that we are working
in a context where we do not need exact equality on streams, only an equivalence.

Let us derive a weaker condition and then attempt to prove any lemmas we find that we
need. We start from our original example

unstream ◦ fs ◦ stream ◦ unstream ◦ gs ◦ stream

This example is rather too specific. A simpler and more general case would be this
transformation

unstream (fs (stream (unstream s)))
= { “stream fusion” }

unstream (fs s)

This still assumes however that fs both consumes and produces a stream. It would be
better to allow fs to produce any type at all, including types containing a stream as a
sub-component (e.g. a pair of streams). We can generalise the above property by making
use of our ≈ equivalence relation.

fs (stream (unstream s)) ≈ fs s

For a function fs that does produce a stream then this property is the same as the
previous one above. For a fs that returns some other non-stream type then we get an
appropriate form of equality. In particular, if the result type contains no stream types as
sub-components then ≈ is straightforward equality. The question now is what lemmas
and assumptions would be sufficient to prove this fusion property.

The function (stream ◦ unstream) ::Stream a → Stream a has the effect of eliminating all
the skips, though the resulting stream should still be equivalent to the original. Looking
at the fusion property, in the right hand side the fs function is presented with a stream
possibly containing skips while on the left side fs (stream (unstream s)) all the skips
have been eliminated. In both cases we require fs to produce equivalent results. That is,
we present fs with different, albeit equivalent, input streams and expect the results also
to be equivalent. It is clear that we will need some assumption about fs . The fs function
has unrestricted access to the skips and it could distinguish between equivalent streams
on the basis of differences in the skips. What we want is for fs to preserve equivalence on
streams, that is it should have the property

Property 3.8.1 (preservation of equivalence).

s ≈ s ′ =⇒ fs s ≈ fs s
′

Or equivalently, by the definition of ≈ at function types

fs ≈ fs

As we noted, stream ◦ unstream eliminates skips but the resulting stream should still be
equivalent. That is, we would hope that the following lemma holds.
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Lemma 3.8.2. stream (unstream s) ≈ s

We defer the proof of this lemma for a moment.

This lemma and the assumption about fs are sufficient to prove the fusion rule for skipping
streams.

Theorem 3.8.3 (Stream fusion for skipping streams in CPOs). When fs preserves
equivalence on streams (i.e. fs ≈ fs) then

fs (stream (unstream s)) ≈ fs s

Proof. Take the definition of fs ≈ fs

∀x x ′. x ≈ x ′ =⇒ fs x ≈ fs x
′

We are free to pick x and x ′. Take x := stream (unstream s), x ′ := s

stream (unstream s) ≈ s =⇒ fs (stream (unstream s)) ≈ fs s

The antecedent here is our lemma stream (unstream s) ≈ s and the consequent is the
statement of the theorem.

Proof of Lemma 3.8.2. Since s is a stream we can expand out the definition of ≈ at this
type.

stream (unstream s) ≈ s
⇐⇒
unstream (stream (unstream s)) = unstream s

This will hold if it is the case that

unstream (stream x ) = x

which we will verify as a separate lemma

So if we can show that unstream ◦ stream is still an identity then it follows easily that
stream (unstream s) ≈ s . There is good reason to believe that unstream ◦ stream is still
an identity on skipping streams despite the fact that stream ◦ unstream is not. This is
because stream gives us a stream with no skips which unstream should then map back
to the same original stream.

Lemma 3.8.4. unstream (stream x ) = x

Proof. The proof is primarily syntactic, with the final step relying on a semantic property
of domains. In particular we rely on the fact final co-algebras exist (without needing any
restriction to domains of strict functions). The specific property we make use of is that
unfold T out = id T . By finality of the co-algebra (T , out), the function unfold T out is
the unique function from T to T but so is id T ::T → T and thus unfold T out = id T .



CHAPTER 3. STREAM FUSION IS CORRECT 84

We start by unfolding definitions for stream, unstream and unbuild .

unstream (stream x )

= { unfold definition of stream }
unstream (unbuild (Stream F ) (Λa → λk → λs → (a, (left ◦ k , s)) ) x )

= { unfold definition of unbuild }
unstream ((Λa → λk → λs → (a, (left ◦ k , s)) ) T out x )

= { β-reduce }
unstream (T , (left ◦ out , x ))

= { unfold definition of unstream }
unfold T (force T (left ◦ out)) x

Had we been working with non-skipping streams then at this stage we would have had
simply unfold T out x but instead we have left to lift into the skipping stream functor
and force to map back into non-skipping streams. Our hope of course is that these two
cancel each other out

force T (left ◦ out)
= { unfold definition of force }
(fix (force ′ T )) (left ◦ out)

= { fixpoint rule fix f = f (fix f ) }
force ′ T (fix (force ′ t)) (left ◦ out)

= { unfold definition of force ′, (left ◦ out) s = left (out s) }
λ(s :: T )→ casesum (left (out s))

(λ(y :: F T )→ y)
(λ(s ′ :: T )→ fix (force ′ t) (left ◦ out) s ′)

= { use the rule casesum (left x ) l r = l x }
λ(s :: T )→ (λ(y :: F T )→ y) (out s)

= { β-reduce }
λ(s :: T )→ out s

= { η-reduce (valid since out is not ⊥) }
out

We can return to where we left off and apply force T (left ◦ out) = out

unfold T (force T (left ◦ out)) x
= { force T (left ◦ out) = out }
unfold T out x

= { unfold T out = id T }
x
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3.8.2 Use as an automatic transformation system

To summarise, we know that

unstream (stream x ) = x
stream (unstream s) ≈ s

and that the stream fusion rule holds provided that fs preserves equivalence on streams

fs ≈ fs =⇒ fs (stream (unstream s)) ≈ fs s

Before going any further it is worth considering if this fusion rule is useful. One of the
touted advantages of short-cut fusion over previous more general fusion systems was that
it uses a syntactic transformation with no side conditions3. This fact makes short-cut
fusion relatively easy to integrate into a compiler.

On the face of it we are in danger of designing a fusion system with a fusion rule that is
not actually an equation, merely an equivalence, and worse it is a rule that has a tricky
side condition. One may well wonder how can we possibly justify the simple rewrite rule
stream (unstream s) = s that we introduced in Chapter 1.

The intuition is that since skipping streams are a data abstraction, that by hiding
the representation we can hope to draw a boundary that gives us a context where, by
construction, the fusion rule is an actual equality and the side conditions are automatically
satisfied.

The approach is to make the stream type itself a non-observable type. That is the
representation is hidden by some mechanism (such as a module) and the only way to
view the stream type is via a limited library of stream functions. These functions are
all required to respect the data abstraction, meaning they must preserve equivalence
on streams. The syntactic context of an expression stream (unstream s) is then some
combination of stream functions from the library.

C [stream (unstream s)]

It is worth observing again that the equivalence relation ≈ becomes simple equality when
used at types that do not contain the stream type anywhere. Of course only types that
do not contain the stream type are observable. By assumption the overall context is at
an observable type. We can turn the context C into a function by lambda abstracting
over the position of the occurrence of stream (unstream s). This gives us an expression
that is an instance of the left hand side of the fusion rule. Since it is at an observable
type then the ≈ is equality. So if we can be sure that the context preserves equivalence
on streams then we can apply the fusion rule as an equality.

The argument that the context does preserves equivalence is by induction on the syntactic
structure of the context. It is trivially true that f ≈ f holds for all external values that
do not involve the stream type. By assumption fs ≈ fs for all the stream functions in the
library. As ≈ is a logical relation it is preserved by abstraction and application. Thus all

3Ignoring for the moment that foldr/build does have a strictness side condition when used in CPOs.
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combinations of external values and stream functions from the library give contexts that
preserve equivalence.

So we may apply the fusion transformation unconditionally since the context guarantees
the side condition

C [stream (unstream s)] = C [s ]

So an implementation may use stream (unstream s) = s as a rewrite rule provided that
it uses a mechanism such as a module to ensure that the stream type is not externally
observable and that each function fs that does have direct access to the representation
respects the data abstraction, i.e. fs ≈ fs .

3.8.3 Properties that library functions must satisfy

Recall that the first stage in the stream fusion process is a transformation such as

map f ◦ filter p
=
unstream ◦maps f ◦ stream ◦ unstream ◦ filter s p ◦ stream

We need to know that the stream versions of these functions are faithful to the original
versions. In this example we are relying on these equations

map f = unstream ◦maps f ◦ stream
filter p = unstream ◦ filter s p ◦ stream

We cannot dodge our obligations by using these equations as definitions since we still
need to know that these re-definitions are equal to the original list versions.

So for each function in our library of stream functions we are obliged to show both that
it preserves equivalence on streams and that it is faithful to the corresponding original
function. We can reduce this effort somewhat by using a single data abstraction property
which covers both of these obligations.

The abstraction property relates functions on streams to the corresponding functions
on ordinary data via the abstraction function unstream. For example, if fs consumes a
stream to produce some other type (e.g. a function like sums) and the corresponding list
version is f then the combined obligation is the standard data abstraction property

fs = f ◦ unstream

It is straightforward to show that this justifies the form f = fs ◦ stream which we use as
a rewrite rule.

Lemma 3.8.5.

fs = f ◦ unstream
=⇒
fs ◦ stream = f
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Proof.

fs = f ◦ unstream
=⇒ { compose both sides with stream }

fs ◦ stream = f ◦ unstream ◦ stream
⇐⇒ { by lemma unstream ◦ stream = id }

fs ◦ stream = f

The more important point is that if fs and f satisfy the data abstraction property then
fs preserves equivalence on streams.

Lemma 3.8.6.

fs = f ◦ unstream
=⇒
s ≈ s ′ =⇒ fs s ≈ fs s

′

Proof. First an equality that we will need

fs = f ◦ unstream
=⇒ { f = fs ◦ stream }

fs = fs ◦ stream ◦ unstream
Now we start with s ≈ s ′ and work towards fs s ≈ fs s

′

s ≈ s ′

=⇒ { definition of ≈ at stream types }
unstream s = unstream s ′

=⇒ { apply fs ◦ stream to both sides }
fs (stream (unstream s)) = fs (stream (unstream s ′))

=⇒ { fs ◦ stream ◦ unstream = fs }
fs s = fs s

′

=⇒ { ≈ at some other non-stream type }
fs s ≈ fs s

′

Of course the data abstraction property fs = f ◦unstream is only for the type of functions
that consume a stream to produce some other non-stream type. We also have to worry
about functions that transform streams or just produce streams. Indeed, more generally
we want a data abstraction property for functions between any types and where those
types may contain streams as sub-components.

Consider for example concatMap on lists and the corresponding version on streams

concatMap :: (a → [b ])→ [a ]→ [b ]
concatMaps :: (a → Stream b)→ Stream a → Stream b
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With some thought we may conclude that the appropriate abstraction property between
these should be

unstream ◦ concatMaps fs = concatMap (unstream ◦ fs) ◦ unstream

Clearly the appropriate abstraction property depends on the type.

The general property for fs and f is given by an abstraction relation A which is another
binary logical relation

fs A f

This time it is not an equivalence relation because we relate different types. We relate
concrete types with abstract types. As before if we have any atomic base types (e.g.
machine integers) then we use simple equality. The interesting case is that we relate
the concrete stream types to the corresponding abstract data type using the abstraction
function unstream

s A x ⇐⇒ unstream s = x

For function types we have the standard logical relation property

f A g ⇐⇒ x A x ′ ⇒ f x A g x

Note that the A relation is the identity for all types that do not contain any stream
types.

The definition of theA relation means that for each specific type we can get the abstraction
property in an equational form. For example we can derive the abstraction property for
concatMaps and concatMap. We simply expand the definition of the relation based on
the type.

concatMaps A concatMap

=⇒ { definition of A at function types }
fs A f =⇒ concatMaps fs A concatMap f

Take fs A f separately

fs A f

=⇒ { definition of A at function types }
x A x ′ =⇒ fs x A f x ′

=⇒ { x A x ′ type does not contain stream types }
x = x ′ =⇒ fs x A f x ′

=⇒ { true for all x , x ′ so can pick x ′ := x }
fs x A f x

=⇒ { definition of A for stream type }
unstream (fs x ) = f x

=⇒ { function composition and η-reduce }
unstream ◦ fs = f
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Returning to the outer derivation, we substitute for f

concatMaps fs A concatMap (unstream ◦ fs)
=⇒ { definition of A at function types }

s R x ⇒ concatMaps fs s A concatMap (unstream ◦ fs) x
=⇒ { definition of A for stream type }

unstream s = x ⇒ concatMaps fs s A concatMap (unstream ◦ fs) x
=⇒

concatMaps fs s A concatMap (unstream ◦ fs) (unstream s)

=⇒ { definition of A for stream type }
unstream (concatMaps fs s) = concatMap (unstream ◦ fs) (unstream s)

=⇒
unstream ◦ concatMaps fs = concatMap (unstream ◦ fs) ◦ unstream

Which is the abstraction property we stated previously for concatMap.

3.8.4 Notes on strictness

Historically, shortcut fusion results have been justified using free theorems. Johann
and Voigtländer (2006) demonstrated that the classical free theorems do not hold
unconditionally once we add fixpoints and polymorphic seq , but require certain side
conditions. They give examples for the foldr/build rule and the unbuild/unfoldr rule
where one side is less defined than the other. The challenge Voigtländer sets to designers
of new shortcut fusion systems is to prove total correctness (or at least to precisely state
side conditions) for a realistic semantic model and not to rely on the näıve use of free
theorems.

While we have used free theorems in the earlier sections of this chapter, this was in the
context of System F where free theorems hold unconditionally. For the results about
skipping streams in CPOs we make much weaker claims and do not rely on parametricity
or free theorems.

If we were to try to prove a stronger result like stream ◦ unstream = id in CPOs, even
for non-skipping streams then we would immediately run into problems. Firstly there is
the issue that stream (unstream ⊥) ̸≡ ⊥ because the left hand side constructs a non-⊥
stream (that unfolds to ⊥). Secondly, the ‘proof’ of stream (unstream (Stream next s)) =
Stream next s would have a step such as

unbuild Stream (unfoldr next s)

= { unbuild/unfoldr fusion }
Stream next s

While this is valid in System F, with fixpoints and polymorphic seq the side conditions
are that next must be non-⊥, strict and total (Johann and Voigtländer, 2006, Laws 16
and 17).
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These side conditions would have to be respected by all functions constructing streams.
While these side conditions are likely rather easier to check than the abstraction property,
they are more restrictive4. Voigtländer gives the example of enumFromTo which, recast
as a stream function, is

enumFromTo n m = Stream next n
where
next i | i >m = Nothing

| otherwise = Just (i , i + 1)

The problem here is that enumFromTo n ⊥ will construct a stream where next n = ⊥,
violating the requirement that next be total.

In a later paper Voigtländer (2008b) suggests variations on the definitions of the
foldr/build and unbuild/unfoldr rules which require no side conditions – even in the pres-
ence of polymorphic seq . He suggests (Voigtländer, 2008b, Section 6) that this trick may
be applicable to stream fusion since stream fusion is derived from unbuild/unfoldr fusion.
Indeed it seems likely that the trick would be applicable to the case of non-skipping
streams. That said, the primary innovation of stream fusion over unbuild/unfoldr fusion
is skipping streams. We cannot hope to preserve the property stream ◦ unstream = id
in the case of skipping streams. The data abstraction approach does not appear to
have problems with subtle strictness conditions; the side condition that stream functions
preserve equivalence on streams is sufficient.

3.9 Proving stream library functions

Having established what we must prove about each library function, in this section we
consider what proof techniques are appropriate and give proofs for a few key functions.
Recall that for each stream function fs and its supposed equivalent on lists f we must
show that they are related by the abstraction relation

fs A f

which expands to an equational property per type. For example for homogeneous
functions like map f or filter p we must show

unstream ◦ fs = f ◦ unstream

Unfortunately we have rather a lot to prove. A full scale implementation of a stream
fusion library contains many functions and we need a proof for each one. We are therefore
interested in techniques that can reduce the overall proof effort. In particular we are
interested in proof techniques that work reliably for whole classes of functions, even if
this means that in particular cases we do not obtain the most insightful or elegant proofs.
To put it another way, we are looking for a reliable handle-turning method.

4The astute reader will notice that we do not prove that enumFromTo works in our system, however
Huffman (2009) does provide a proof.
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The proofs developed in this section are not the first proofs of the corresponding theorems.
Huffman (2009) has developed machine-checked proofs of the abstraction property for a
number of functions. He uses the Isabelle/HOLCF framework which supports proofs in
domain theory using fixpoint induction. The contribution of this section is to explore
and explain the proof techniques. We use a ‘by-hand’ proof style rather than a style
suited for an automated proof assistant.

We will concentrate solely on the case of streams and lists, rather than the general case for
a arbitrary functor. We will use Haskell notation for data definitions, data constructors
and case expressions.

Definition 3.9.1 (Skipping stream).

data Stream a = ∃s . Stream (s → Step a s) s

data Step a s = Done
| Skip s
| Yield a s

3.9.1 Consideration of proof techniques

Before we plunge into attempting proofs for specific functions we should consider what
techniques are available to us and what is likely to work. Starting with the example of
map, we aim to show

unstream ◦maps f = map f ◦ unstream

That is we must prove equality between two functions. Each side of the equation is a
function from streams to lists. Following the terminology of Gibbons and Hutton (2005),
these functions are both corecursive programs. They define corecursive programs to
be functions whose range is a type defined recursively as the greatest solution of some
equation – or more simply types that are final co-algebras. We thus have available to us
all the proof methods for corecursive programs (Gibbons and Hutton, 2005, Sections 3–6),
including fixpoint induction, the approximation lemma, coinduction and unfold fusion.

In addition to functions like maps that transform streams, the other common classes
of functions are those that only consume streams or that only produce streams. The
eponymous representatives of these three classes are as follows

consumes :: Stream A→ B
consume :: [A ] → B

transforms :: Stream A→ Stream B
transform :: [A ] → [B ]

produces :: A → Stream B
produce :: A → [B ]
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Assuming the types A and B do not contain streams then the abstraction property for
each are

Property 3.9.2 (Abstraction property for stream consumers, transformers and produc-
ers).

consumes = consume ◦ unstream
unstream ◦ transforms = transform ◦ unstream
unstream ◦ produces = produce

We can use corecursive proof techniques for the transformers and producers because the
range type is a list. The consumers are somewhat harder because they are functions
from a stream to some other type that is different for each function. We will consider
transformers and producers first and return to producers later in this section.

We will evaluate our selected proof approaches using maps/map as an initial simple
example. After map we will look at examples of increasing complexity:

• filter has essentially the same structure as map but makes non-trivial use of skip
(Section 3.9.4);

• append and zip use non-trivial stream states and two input streams (Sections 3.9.5
and 3.9.6);

• concatMap has a complex stream state using a nested stream (Section 3.9.7);

Finally, having seen these various examples, in Section 3.9.8 we consider a general “handle
turning” method for these kinds of proofs.

Note that we have not yet met the stream versions of append , zip or concatMap. This
section is primarily about proofs and not about the design of stream functions. It may
help to refer to Chapter 4 where the design of stream functions is considered in more
detail, before returning to the later examples in this section.

One challenge we must deal with is the fact that unstream uses a recursion that is not
well-founded. The standard approach for properties about non-well-founded recursion is
fixpoint induction. We can reasonably guess that we will need to use fixpoint induction
somewhere to deal with the aspect of unstream that uses non-well-founded recursion to
consume unbounded sequences of skips. It is not obvious a priori that the entire proof
need be by fixpoint induction.

How we choose to structure unstream is related to how we most naturally structure
proofs about unstream. In the current context of the list functor, our previous general
definition of unstream for skipping streams is the following
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Definition 3.9.3 (Structured version of unstream).

unstream :: Stream a → [a ]
unstream (Stream next s) = unfoldr (force f ) s

unfoldr :: (s → Maybe (a, s))→ s → [a ]
unfoldr next s = case next s of

Nothing → [ ]
Just (x , s ′)→ x : unfoldr next s ′

force :: (s → Step a s)→ (s → Maybe (a, s))
force = fix h
where
h g next s = case next s of

Done → Nothing
Skip s ′ → g next s ′

Yield x s ′ → Just (x , s ′)

This definition is structured with an unfold and a separate non-well-founded force. As
an alternative definition of unstream we could combine the two recursions into a single
non-well-founded recursion

Definition 3.9.4 (Single fixpoint version of unstream).

unstream :: Stream a → [a ]
unstream (Stream next s) = unfoldStep next s

unfoldStep :: (s → Step a s)→ s → [a ]
unfoldStep = fix h
where
h g next s = case next s of

Done → [ ]
Skip s ′ → g next s ′

Yield x s ′ → x : g next s ′

The former definition would likely be preferable if we believe we can structure the proof
in two parts, one part using the more pleasant properties of unfold and a second part
to deal with the non-well-founded force. On the other hand, if we do the entire proof
using fixpoint induction then the latter definition is likely to be preferable since it uses
fix once rather than twice. We will evaluate both approaches.
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3.9.2 maps/map by a single fixpoint induction

We will start with the second definition of unstream and use fixpoint induction (see
Section 2.3 for a brief introduction).

We will use the standard definition of map on lists and the following as our definition of
maps

Definition 3.9.5 (maps function).

maps :: (a → b)→ Stream a → Stream b
maps f (Stream next s) = Stream (nextmap f next) s

nextmap f next s = case next s of
Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x ) s ′

Theorem 3.9.6 (maps/map abstraction property).

unstream ◦maps f = map f ◦ unstream

Proof. We apply both sides to an arbitrary stream. We must account for the case of
a ⊥ stream. Fortunately this is a matter of observing that unstream, map and maps

are all strict. So we can move on to the primary case of an arbitrary non-⊥ stream
Stream next s

unstream (maps f (Stream next s)) = map f (unstream (Stream next s))

We can unfold the definition of unstream and maps to get

unfoldStep (nextmap f next) s = map f (unfoldStep next s)

This exposes unfoldStep on both sides which is the key function defined by a fixpoint.
Thus we can use this equation as the fixpoint induction goal.

We now need to define a property P and a function h such that P (fix h) is the above
induction goal

P (fix h) ⇐⇒ unfoldStep (nextmap f next) s = map f (unfoldStep next s)

We can define P g by abstracting over unfoldStep

Definition 3.9.7.

P g ⇐⇒ g (nextmap f next) s = map f (g next s)

Now we can restate our goal as P unfoldStep. Since unfoldStep = fix h, P unfoldStep =
P (fix h) which is the required form for the conclusion of the fixpoint induction proof
scheme.



CHAPTER 3. STREAM FUSION IS CORRECT 95

Having set up the property P what remains is to actually do the fixpoint induction. The
P ⊥ case is straightforward, relying only on the fact that map is strict.

P ⊥
⇐⇒
⊥ (nextmap f next) s = map f (⊥ next s)
⇐⇒
⊥ = ⊥

For the inductive case we start with P (h g)

P (h g)

⇐⇒
h g (nextmap f next) s = map f (h g next s)

⇐⇒ { unfold definition of h and nextmap }
case (case next s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x ) s ′)
of
Done → [ ]
Skip s ′ → g (nextmap f next) s ′

Yield x s ′ → x : g (nextmap f next) s ′

=
map f (case next s of

Done → [ ]
Skip s ′ → g next s ′

Yield x s ′ → x : g next s ′)

We now split into the four possible cases of next s (⊥, Done, Skip s ′ or Yield x s ′) and
evaluate each side of the equation. The evaluation steps are straightforward but verbose
so we omit the details and just tabulate the results:

next s h g (nextmap f next) s map f (h g next s)
⊥ ⊥ ⊥
Done [ ] [ ]
Skip s ′ g (nextmap f next) s ′ map f (g next s ′)
Yield x s ′ f x : g (nextmap f next) s ′ f x :map f (g next s ′)

The first two cases are simply equal and the latter two cases are equal with an application
of the induction hypothesis P g . So we have that P g ⇒ P (h g).

A very slight variation on the same proof is instead of splitting on cases and evaluating,
to keep and transform the definitions as a whole. Starting again from

h g (nextmap f next) s = map f (h g next s)
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We unfold the left hand side to

h g (nextmap f next) s

= { unfold definition of h and nextmap }
case ( case next s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x ) s ′)
of
Done → [ ]
Skip s ′ → g (nextmap f next) s ′

Yield x s ′ → x : g (nextmap f next) s ′

= { case-of-case transformation }
case next s of
Done → [ ]
Skip s ′ → g (nextmap f next) s ′

Yield x s ′ → f x : g (nextmap f next) s ′

And on the right hand side

map f (h g next s)

= { unfold h }
map f (case next s of

Done → [ ]
Skip s ′ → g next s ′

Yield x s ′ → x : g next s ′)

= { push function application through case }
case next s of
Done → map f [ ]
Skip s ′ → map f ( g next s ′)
Yield x s ′ → map f (x : g next s ′)

= { unfold map }
case next s of
Done → [ ]
Skip s ′ → map f (g next s ′)
Yield x s ′ → f x :map f (g next s ′)

By applying the induction hypothesis these two expressions are equal.
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3.9.3 maps/map by a structured approach

We will now try a proof using the more structured definition of unstream. The approach
here is to ‘pull’ the map through the force and the unfold . Let us sketch the outline and
then return to consider the two key steps.

Theorem 3.9.8 (maps/map abstraction property).

unstream ◦maps f = map f ◦ unstream

Proof. As before we can easily verify the case of a ⊥ stream. The main case is

unstream (maps f (Stream next s)) = map f (unstream (Stream next s))

We unfold definitions on both sides to get

unfold (force (nextmap f next)) s = map f (unfold (force next) s)

We now want to ‘pull’ the map through both force and unfoldr

unfold (force (nextmap f next)) s

= { lemma force/nextmap }
unfold (next ′map f (force next)) s

= { lemma map/unfold }
map f (unfold (force next) s)

For the force/nextmap lemma we need

force (nextmap f next) = next ′map f (force next)

for some suitable definition of next ′map . It is instructive to consider the types of nextmap

and next ′map

nextmap :: (a → b)→ (s → Step a s) → (s → Step b s)
next ′map :: (a → b)→ (s → Maybe (a, s))→ (s → Maybe (b, s))

The nextmap transforms stepper functions on skipping streams while next ′map does the
equivalent transformation for stepper functions on non-skipping streams. Its definition is
straightforward

next ′map f next s = case next s of
Nothing → Nothing
Just (x , s ′)→ Just (f x , s ′)

The obvious approach to proving this first lemma is by fixpoint induction. We have a
single instance of fix in the force function.



CHAPTER 3. STREAM FUSION IS CORRECT 98

Lemma 3.9.9 (force/nextmap).

force (nextmap f next) s = next ′map f (force next) s

Proof. Recall the definition of force

force = fix h
where
h g next s = case next s of

Done → Nothing
Skip s ′ → g next s ′

Yield x s ′ → Just (x , s ′)

Define fixpoint induction property P by

P g ⇐⇒ g (nextmap f next) s = next ′map f (g next) s

Note that P (fix h) = P force which is the statement of the lemma.

The P ⊥ case is straightforward. For the P (h g) case we have

P (h g)
⇐⇒
h g (nextmap f next) s = next ′map f (h g next) s
⇐⇒

case (case next s of
Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x ) s ′)
of
Done → Nothing
Skip s ′ → g (nextmap f next) s ′

Yield x s ′ → Just (x , s ′)
=
case (case next s of

Done → Nothing
Skip s ′ → g next s ′

Yield x s ′ → Just (x , s ′))
of
Nothing → Nothing
Just (x , s ′)→ Just (f x , s ′)

We split on the four possibilities for next s (⊥, Done, Skip s ′ or Yield x s ′) and evaluate
each side of the equation.

next s force (nextmap f next) s next ′map f (force next) s

⊥ ⊥ ⊥
Done Nothing Nothing
Skip s ′ g (nextmap f next) s ′ {see below}
Yield x s ′ Just (f x , s ′) Just (f x , s ′)
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For the right hand side of the Skip s ′ case we get

next ′map f (force next) s
=

case g next s ′ of
Nothing → Nothing
Just (x , s ′)→ Just (f x , s ′)

= { fold definition of next ′map }
next ′map f (g next) s ′

which gives us an instance of the induction hypothesis.

For the map/unfold lemma we need

unfold (next ′map f (force next)) s
=
map f (unfold (force next) s)

For this lemma we can use fixpoint induction, the approximation lemma or coinduction.
The choice does not matter as each technique amounts to the same thing in the context
of this lemma. We split on the three5 possible cases for force next s0: ⊥, Nothing or
Just (x , s ′). In each case we unfold definitions on both sides of the equation.

unfold (next ′map f (force next)) s = map f (unfold (force next) s)

On the left hand side

unfold (next ′map f (force next)) s
=
case next ′map f (force next) s of
Nothing → [ ]
Just (x , s ′)→ x : unfold (next ′map f (force next)) s ′

=
case (case force next s of

Nothing → Nothing
Just (x , s ′)→ Just (f x , s ′))

of
Nothing → [ ]
Just (x , s ′)→ x : unfold (next ′map f (force next)) s ′

On the right hand side

map f (case force next s of
Nothing → [ ]
Just (x , s ′)→ x : unfold (force next) s ′)

=
case force next s of
Nothing → [ ]
Just (x , s ′)→ f x :map f (unfold (force next) s ′)

5Technically we should also consider Just ⊥ however we could easily eliminate this case by defining
unfold using a specialised data type that does not include this extra unwanted value.
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Evaluating both sides for the three cases of force next s gives

force next s unfold (next ′map f (force next)) s map f (unfold (force next) s)

⊥ ⊥ ⊥
Nothing [ ] [ ]
Just (x , s ′) f x : unfold (next ′map f (force next)) s ′ f x :map f (unfold (force next) s ′)

These observations amount to a ‘casual’ fixpoint induction proof where we do go to the
effort of defining the predicate or the recursive function in terms of fix . The danger in
this style is that we may accidentally attempt to apply the induction hypothesis before
having unrolled the fix by one step.

We can turn these observations into a fixpoint induction proof by using the following P
and an appropriate definition of unfold as an instance of fix .

P g ⇐⇒ g (next ′map f (force next)) s = map f (g (force next) s)

In the Just (x , s ′) case we get an instance of the induction hypothesis P g .

A proof using the approximation lemma would also be straightforward. In the Just (x , s ′)
case we would have

approx (m + 1) (f x : unfold (next ′map f (force next)) s ′)
=
approx (m + 1) (f x :map f (unfold (force next) s ′))

Unfolding approx (m + 1) gives us

f x : approx m (unfold (next ′map f (force next)) s ′)
=
f x : approx m (map f (unfold (force next) s ′))

Which is then true by the induction hypothesis that for all n

approx n (unfold (next ′map f (force next)) s ′)
=
approx n (map f (unfold (force next) s ′))

A proof using coinduction is perhaps the most direct. We would use the standard
bisimulation property on lists and the relation

R = {(unfold (next ′map f (force next)) s ,map f (unfold (force next) s)}
Each of the three cases for force next s lets us exhibit that the lists are either both ⊥ or
[ ] or start with equal elements. In the Just (x , s ′) case we get directly that the tails are
related by R.

In evaluating the two proof approaches we have considered it is fair to say that for this
example the single fixpoint approach is somewhat less effort. It is disappointing that the
approach that separates the well-founded and non-well founded recursions does not give
rise to a noticeably shorter proof. Indeed the fixpoint proof about force is comparable in
size to the whole proof in the other case. The more structured approach also requires we
invent or derive a suitable definition of the stepper function on non-skipping lists. The
only advantage of the more structured approach is that it provides us with an intuition
about pulling the operation through the force fixpoint and the unfold .
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3.9.4 filter s/filter

For filter we will use fixpoint induction again but also give the highlights of the alternative
more structured approach.

We will use the standard definition of filter and use the following as our definition of
filter s .

Definition 3.9.10 (filter s function).

filter s :: (a → Bool)→ Stream a → Stream a
filter s p (Stream next s) = Stream (nextfilter p next) s

nextfilter p next s = case next s of
Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → if p x then Yield x s ′

else Skip s ′

Theorem 3.9.11 (filter s/filter abstraction property).

unstream ◦ filter s p = filter p ◦ unstream

Proof. The ⊥ stream case is straightforward since filter s and filter p are strict. The
main case is

unstream (filter s p (Stream next s)) = filter p (unstream (Stream next s))

= { unfold definition of unstream and filter s }
unfoldStep (nextfilter p next) s = filter p (unfoldStep next s)

Our fixpoint induction property abstracts over unfoldStep

P g ⇐⇒ g (nextfilter p next) s = filter p (g next s)

The P ⊥ case is straightforward as filter p is strict. The P (h g) case is

P (h g)

⇐⇒
h g (nextfilter p next) s = filter p (h g next s)

⇐⇒ { unfold definition of h and nextfilter }
case (case next s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → if p x then Yield x s ′

else Skip s ′)

of
Done → [ ]
Skip s ′ → g (nextfilter p next) s ′

Yield x s ′ → x : g (nextfilter p next) s ′

=
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=
filter p (case next s of

Done → [ ]
Skip s ′ → g next s ′

Yield x s ′ → x : g next s ′)

We split on the cases of next s and additionally we split the Yield x s ′ case into two, p x
and not (p x )

next s h g (nextfilter p next) s filter p (h g next s)
⊥ ⊥ ⊥
Done [ ] [ ]
Skip s ′ g (nextfilter p next) s ′ filter p (g next s ′)
Yield x s ′ ∧ p x x : g (nextfilter p next) s ′ x : filter p (g next s ′)
Yield x s ′ ∧ not (p x ) g (nextfilter p next) s ′ filter p (g next s ′)

These are all equal, either directly or using the induction hypothesis P g

g (nextfilter p next) s ′ = filter p (g next s ′)

For the more structured approach, the outline is as follows with the two important steps
being those in which we pull the filter through the force and unfold functions

unstream (filter s p (Stream next s))

= { unfold definition of filter s }
unstream (Stream (mapFilter p next) s)

= { unfold definition of unstream }
unfold (force (mapFilter p next)) s

= { lemma force/mapFilter }
unfold (mapFilter ′ f (force next)) s

= { lemma filter/unfold }
filter p (unfold (force next) s)

= { fold definition of unstream }
filter p (unstream (Stream next s))

The main difference with the previous map example is that while next ′map is not recursive,
the next ′filter is not only recursive but a non-well-founded recursion.

next ′filter p next s = case next s of
Nothing → Nothing
Just (x , s ′)→ if p x then Just (x , s ′)

else next ′filter p next s ′

In turn this complicates the proof of both lemmas.
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The first lemma is

force (nextfilter p next) s = next ′filter p (force next) s

The proof is complicated by the fact that there are two instances of fix , one in force and
one in next ′filter . The second lemma is

unfold (next ′filter p (force next)) s = filter p (unfold (force next) s)

Unlike in the map example, this second lemma also has to use fixpoint induction.
The approximation lemma and coinduction methods are not available since we cannot
demonstrate that both sides produce a list element. Again the presence of two instances
of fix complicates the fixpoint induction proof.

For this filter example, the single fixpoint induction is clearly less effort.

3.9.5 append s/append

The standard list append (or ++) function is

Definition 3.9.12 (append function).

append :: [a ]→ [a ]→ [a ]
append [ ] ys = ys
append (x : xs) ys = x : append xs ys

The corresponding stream version is as follows.

Definition 3.9.13 (append s function).

append s :: Stream a → Stream a → Stream a
append s (Stream nexta sa) (Stream nextb sb) =
Stream (nextappend nexta nextb) (Left (sa , sb))

nextappend nexta nextb (Left (sa , sb)) =
case nexta sa of
Done → Skip (Right sb)
Skip s ′a → Skip (Left (s ′a , sb))
Yield x s ′a → Yield x (Left (s ′a , sb))

nextappend nexta nextb (Right sb) =
case nextb sb of
Done → Done
Skip s ′b → Skip (Right s ′b)
Yield x s ′b → Yield x (Right s ′b)

There are a couple points worth noting. Firstly, append s takes two input streams and
more interestingly it uses a non-trivial stream state. For append s the stream state is
Either (sa , sb) sb, where sa and sb are the types of the states of the two input streams.
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By contrast, maps and filter s have the same type for the state of the output stream as
for the input stream.

These points will have an impact on the structure of the proof. Instead of trying to guess
the full structure of the proof from the outset we will explore using the approach from
the previous examples and adjust as necessary. The hope is that the reasons for the
failure of the initial approach will be as illuminating as any final proof.

For append s/append , the abstraction property is

unstream (append s a b) = append (unstream a) (unstream b)

Assuming streams a and b are not ⊥ we can use use a = Stream nexta sa and similarly
for b. We can then start unfolding definitions

unstream (append s (Stream nexta sa) (Stream nextb sb))
= append (unstream sa) (unstream sb)

⇐⇒ { unfold definition of unstream and append s on both sides }
unfoldStep (nextappend nexta nextb) (Left (sa , sb))

= append (unfoldStep nexta sa) (unfoldStep nextb sb)

There are two thing of note. Firstly we note the property mentions only the Left (sa , sb)
mode and not the Right sb mode. Inspection of the Done case in nextappend tells us that
we will need to know something about the Right sb mode. Secondly, while it is clear
that we will need to use unfoldStep as the fixpoint, there are multiple occurrences and it
is not immediately clear which ones we should abstract over when we pick our fixpoint
induction hypothesis.

Initially we will define the fixpoint induction property by abstracting over all occurrences
of unfoldStep and see where that gets us

P g ⇐⇒ g (nextappend nexta nextb) (Left (sa , sb))
= append (g nexta sa) (g nextb sb)

The P ⊥ case is straightforward as append is strict in its first argument. The P (h g)
case starts with

P (h g) ⇐⇒ h g (nextappend nexta nextb) (Left (sa , sb))
= append (h g nexta sa) (h g nextb sb)

Unfolding the left hand side gives

h g (nextappend nexta nextb) (Left (sa , sb))
=
case nextappend nexta nextb (Left (sa , sb)) of
Done → [ ]
Skip s ′ → g (nextappend nexta nextb) s

′

Yield x s ′ → x : g (nextappend nexta nextb) s
′

=
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=
case (case nexta sa of

Done → Skip (Right sb)
Skip s ′a → Skip (Left (s ′a , sb))
Yield x s ′a → Yield x (Left (s ′a , sb)))

of
Done → [ ]
Skip s ′ → g (nextappend nexta nextb) s

′

Yield x s ′ → x : g (nextappend nexta nextb) s
′

And unfolding the right hand side gives

append (h g nexta sa) (h g nextb sb)
=
append (case nexta sa of

Done → [ ]
Skip s ′a → g nexta s ′a
Yield x s ′a → x : g nexta s ′a)

(h g nextb sb)
=
case nexta sa of
Done → h g nextb sb
Skip s ′a → append (g nexta s ′a) (h g nextb sb)
Yield x s ′a → x : append (g nexta s ′a) (h g nextb sb)

We now evaluate both sides for the four nexta sa possibilities and tabulate the results for
the left and right hand sides

nexta sa h g (nextappend nexta nextb) (Left (sa , sb))
⊥ ⊥
Done g (nextappend nexta nextb) (Right sb)
Skip s ′ g (nextappend nexta nextb) (Left (s

′
a , sb))

Yield a s ′ x : g (nextappend nexta nextb) (Left (s
′
a , sb))

nexta sa append (h g nexta sa) (h g nextb sb)
⊥ ⊥
Done unfoldStep nextb sb
Skip s ′ append (g nexta s ′a) (h g nextb sb)
Yield a s ′ x : append (g nexta s ′a) (h g nextb sb)

We want to show that the corresponding entries between the two tables are equal, possibly
with the use of the induction hypothesis. Reading off the tables however we can see two
issues. The first is that in the Done case we are left with the sub-goal of

g (nextappend nexta nextb) (Right sb) = h g nextb sb

We were expecting to have to prove something about the Right sb mode and this sub-goal
gives shows us what the general structure of that should be. It is straightforward to
prove a similar property, namely

unfoldStep (nextappend nexta nextb) (Right sb) = unfoldStep nextb sb
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which we can do using fixpoint induction with the induction hypothesis

P g ⇐⇒ g (nextappend nexta nextb) (Right sb) = g nextb sb

It is not immediately obvious however how to connect this lemma with our sub-goal,
though we may expect that we may either be able to use a secondary fixpoint induction
like the above or to strengthen the main induction hypothesis with a clause similar to
the above property.

The second problem is that in all the non-⊥ cases we cannot actually apply our induction
hypothesis because on the left hand side we have g but on the right we have h g .

Intuitively, the problem is that we are simultaneously unrolling several fixpoints at once
but we actually want to unroll some and not others. The append function has two phases:
the first where it steps through the first stream and a second phase where it steps through
the second stream. With our initial choice of induction hypothesis we are unfolding the
second stream by one step even though in the first phase we only want to unfold the first
stream.

We could try reformulating our induction hypothesis so that we leave the second stream
alone. That is we do not abstract over unfoldStep on the right hand side in the second
argument to append

P g ⇐⇒ g (nextappend nexta nextb) (Left (sa , sb))
= append (g nexta sa) (unfoldStep nextb sb)

While this will let us successfully apply the induction hypothesis in the Skip and Yield
cases, for the Done case we are left with

g (nextappend nexta nextb) (Right sb) = unfoldStep nextb sb

We cannot prove this as a general lemma since we know nothing about g . We cannot
simply add this property into the induction hypothesis because it is not true for the P ⊥
case; the left hand side is ⊥ but the right is not.

Again, the intuition is that we are still trying to unroll two fixpoints simultaneously, but
that the definition does not have enough symmetry for this to work out. Instead we
should take an asymmetric approach and verify each fixpoint independently.

The key trick is that we can use anti-symmetry to allow an asymmetric approach. We
can split an equality property g = f into g ⊑ f ∧ f ⊒ g , where ⊑ is the normal domain
ordering. In the context of fixpoint induction we formulate similar properties P and
Q for the two direction and we prove each by a separate fixpoint induction. To take
actually advantage of the asymmetry we define the properties P and Q such that we
only abstract over a fixpoint on one side of the partial order relation.

With the above example sub-goal we can use

P g ⇐⇒ g (nextappend nexta nextb) (Right sb) ⊑ unfoldStep nextb sb

Q g ⇐⇒ unfoldStep (nextappend nexta nextb) (Right sb) ⊒ g nextb sb
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Then if we can complete both fixpoint inductions then the conclusions P (fix h) (equiva-
lently P unfoldStep) and Q (fix h) (equivalently Q unfoldStep) give us

unfoldStep (nextappend nexta nextb) (Right sb) ⊑ unfoldStep nextb sb

∧ unfoldStep (nextappend nexta nextb) (Right sb) ⊒ unfoldStep nextb sb
⇐⇒ { anti-symmetry }

unfoldStep (nextappend nexta nextb) (Right sb) = unfoldStep nextb sb

We can now tackle the proof by applying the anti-symmetry technique and by strength-
ening the induction hypothesis to cover both Left and Right modes.

Theorem 3.9.14 (append s/append abstraction property).

unstream (append s a b) = append (unstream a) (unstream b)

Proof. For non-⊥ streams a and b the statement is equivalent to

unfoldStep (nextappend nexta nextb) (Left (sa , sb))
= append (unfoldStep nexta sa) (unfoldStep nextb sb)

We will prove a stronger result, also covering the Right mode

unfoldStep (nextappend nexta nextb) (Left (sa , sb))
= append (unfoldStep nexta sa) (unfoldStep nextb sb)
∧

unfoldStep (nextappend nexta nextb) (Right sb)
= unfoldStep nextb sb

We split each equation using anti-symmetry and we will prove the ⊑ and ⊒ directions
independently by fixpoint induction. To form the induction properties we abstract over
the unfoldStep on the lesser side of the ⊑ partial order. Although logically the ⊑ and
⊒ directions are independent we can save space by considering both directions at once.
To enable us to consider both directions with a single set of unfoldings we will define
parametrised versions of the left and right hand sides of the two equations. Each is
abstracted over the occurrence of the unfoldStep we will do the fixpoint induction on.

LHS a g = g (nextappend nexta nextb) (Left (sa , sb))
RHS a g = append (g nexta sa) (unfoldStep nextb sb)

LHS b g = g (nextappend nexta nextb) (Right sb)
RHS b g = g nextb sb

We now need to construct the two induction hypotheses P and Q . Our first guess might
be to do something fairly symmetric such as

P g ⇐⇒ Pa g ∧ Pb g
Pa g ⇐⇒ LHS a g ⊑ RHS a unfoldStep

Pb g ⇐⇒ LHS b g ⊑ RHS b unfoldStep

Q g g ⇐⇒ Qa g ∧ Qb g
Qa g ⇐⇒ LHS a unfoldStep ⊒ RHS a g
Qb g ⇐⇒ LHS b unfoldStep ⊒ RHS b g
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With these properties the corresponding induction steps would be

Pa (h g) ⇐= Pa g ∧ Pb g
Pb (h g) ⇐= Pa g ∧ Pb g

Qa (h g)⇐= Qa g ∧ Qb g
Qb (h g) ⇐= Qa g ∧ Qb g

However if we do this we will find that we get stuck in the Done case for Qa (h g). The
Done case for Pa (h g) is straightforward as it reduces to the obligation

g (nextappend nexta nextb) (Right sb) ⊑ unfoldStep nextb sb

which we can discharge as it is exactly the induction hypothesis Pb g . On the other hand,
the Done case for Qa (h g) reduces to the obligation

unfoldStep (nextappend nexta nextb) (Right sb) ⊒ unfoldStep nextb sb

This is not an instance of Qb g because it is not g on the right hand side, rather it is
unfoldStep. So while this property is not an instance of the induction hypothesis we do
still expect it to be true. Proving it however requires a separate fixpoint induction.

So the thing we should notice here is that we never needed Qb g to be in the induction
hypothesis but that we do need Qb unfoldStep which itself can be proved using fixpoint
induction with Qb g as the hypothesis. We should therefore adjust the structure of the
proof and the induction hypotheses. We eliminate Qb from the property Q . We will use
Qb as the property for an independent fixpoint induction

Q g g ⇐⇒ Qa g
Qa g ⇐⇒ LHS a unfoldStep ⊒ RHS a g

Qb g ⇐⇒ LHS b unfoldStep ⊒ RHS b g

The induction steps that we will aim to prove are now

Qa (h g)⇐= Qa g ∧ Qb unfoldStep

Qb (h g) ⇐= Qb g

So we use Qb in a simple independent induction with a conclusion of Qb (fix h) =
Qb unfoldStep . This is then used as an assumption in the induction step of Qa . The Pa

and Pb are as before. The overall theorem is stated as Pa unfoldStep ∧ Qa unfoldStep .

The ⊥ cases are straightforward. Pa ⊥, Pb ⊥ and Qb ⊥ are trivial while Qa ⊥ relies on
the fact that append is strict in its first argument.

The structure of the remainder of the proof is to unfold the left and right hand sides
of each clause and to do the usual evaluation for the cases of nexta sa and nextb sb.
Unfortunately a straightforward handle-turning approach generates many similar cases
to check. We will take advantage of our factorised definition to give a somewhat less
verbose proof. We will tabulate the results and use the tables to check all four cases
of the four induction steps. We try to discharge each case either by simple syntactic
equality or by applying an appropriate clause of the induction hypothesis.
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We now unfold LHS a (h g) and RHS a (h g)

LHS a (h g)
=
h g (nextappend nexta nextb) (Left (sa , sb))

=
case nextappend nexta nextb (Left (sa , sb)) of
Done → [ ]
Skip s ′ → g (nextappend nexta nextb) s

′

Yield x s ′ → x : g (nextappend nexta nextb) s
′

=
case (case nexta sa of

Done → Skip (Right sb)
Skip s ′a → Skip (Left (s ′a , sb))
Yield x s ′a → Yield x (Left (s ′a , sb)))

of
Done → [ ]
Skip s ′ → g (nextappend nexta nextb) s

′

Yield x s ′ → x : g (nextappend nexta nextb) s
′

=
case nexta sa of
Done → g (nextappend nexta nextb) (Right sb)
Skip s ′a → g (nextappend nexta nextb) (Left (s

′
a , sb))

Yield x s ′a → x : g (nextappend nexta nextb) (Left (s
′
a , sb))

Unfolding the right hand side gives

RHS a (h g)
=
append (h g nexta sa) (unfoldStep nextb sb)

=
append (case nexta sa of

Done → [ ]
Skip s ′a → g nexta s ′a
Yield x s ′a → x : g nexta s ′a)

(h g nextb sb)
=
case nexta sa of
Done → unfoldStep nextb sb
Skip s ′a → append (g nexta s ′a) (unfoldStep nextb sb)
Yield x s ′a → x : append (g nexta s ′a) (unfoldStep nextb sb)
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Similarly we unfold LHS b (h g) and RHS b (h g)

LHS b (h g)
=
h g (nextappend nexta nextb) (Right sb)

=
case nextappend nexta nextb (Right sb) of
Done → [ ]
Skip s ′ → g (nextappend nexta nextb) s

′

Yield x s ′ → x : g (nextappend nexta nextb) s
′

=
case (case nextb sb of

Done → Done
Skip s ′b → Skip (Right s ′b)
Yield x s ′b → Yield x (Right s ′b))

of
Done → [ ]
Skip s ′ → g (nextappend nexta nextb) s

′

Yield x s ′ → x : g (nextappend nexta nextb) s
′

=
case nextb sb of
Done → [ ]
Skip s ′b → g (nextappend nexta nextb) (Right s

′
b)

Yield x s ′b → x : g (nextappend nexta nextb) (Right s
′
b)

and right hand side

RHS b (h g)
=
h g nextb sb

=
case nextb sb of
Done → [ ]
Skip s ′b → g nextb s

′
b

Yield x s ′b → x : g nextb s
′
b
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We evaluate both sides for the cases of nexta sa/nextb sb and tabulate the results

nexta sa LHS a (h g)
⊥ ⊥
Done g (nextappend nexta nextb) (Right sb)
Skip s ′b g (nextappend nexta nextb) (Left (s

′
a , sb))

Yield x s ′b x : g (nextappend nexta nextb) (Left (s
′
a , sb))

nexta sa RHS a (h g)
⊥ ⊥
Done unfoldStep nextb sb
Skip s ′b append (g nexta s ′a) (unfoldStep nextb sb)
Yield x s ′b x : append (g nexta s ′a) (unfoldStep nextb sb)

nextb sb LHS b (h g) RHS b (h g)
⊥ ⊥ ⊥
Done [ ] [ ]
Skip s ′b g (nextappend nexta nextb) (Right s

′
b) g nextb s

′
b

Yield x s ′b x : g (nextappend nexta nextb) (Right s
′
b) x : g nextb s

′
b

Recall the definitions

Pa g ⇐⇒ LHS a g ⊑ RHS a unfoldStep

Pb g ⇐⇒ LHS b g ⊑ RHS b unfoldStep

Qa g ⇐⇒ LHS a unfoldStep ⊒ RHS a g
Qb g ⇐⇒ LHS b unfoldStep ⊒ RHS b g

We now need to check the four induction steps

Pa (h g) ⇐= Pa g ∧ Pb g
Pb (h g) ⇐= Pb g

Qa (h g)⇐= Qa g ∧ Qb unfoldStep

Qb (h g) ⇐= Qb g

We do this by using the tables to read off the terms of for each case of nexta sa/nextb sb
and applying the induction hypothesis. For the LHS x (h g)/RHS x (h g) terms, the
tables give them directly. ForLHS x unfoldStep/RHS x unfoldStep we note that unfoldStep =
fix h = h (fix h) = h unfoldStep and so we can obtain the desired terms by substituting
g := unfoldStep in LHS x (h g) and RHS x (h g).

All of the 16 cases are simple enough that they can be checked by inspection. The ⊥
cases are all trivial, as is the Done case for Pb and Qb. The Skip and Yield cases are
straightforward as they are all instances of the corresponding induction hypothesis. For
example in the Skip s ′b case of Pb (h g) we have to check

LHS b (h g) ⊑ RHS b unfoldStep ⇐= LHS b g ⊑ RHS b unfoldStep
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We do so by inspecting the Skip s ′b row with g := unfoldStep on the right hand side and
noting that

g (nextappend nexta nextb) (Right s
′
b) ⊑ unfoldStep nextb s

′
b

is the induction hypothesis Pb g .

The interesting cases are Pa (h g) and Qa (h g) in the Done case. For Pa (h g) we have

g (nextappend nexta nextb) (Right sb) ⊑ unfoldStep nextb sb

which is the induction hypothesis for the Right mode, Pb g . For Qa (h g) we have

unfoldStep (nextappend nexta nextb) (Right sb) ⊒ unfoldStep nextb sb

This is where we need the conclusion of the separate Qb fixpoint induction. This property
is exactly Qb (fix h) = Qb unfoldStep . This completes the proof.

What is interesting is that out of all the cases (all 4 × 2 × 2 of them) the only ones
that have any asymmetry are the Done cases for the Left mode. This is the stage in
evaluation where the append function transitions from the first list to the second.

While this proof is rather tiresome due to the large number of cases, the structure and
principles are fairly simple. Compared to the proofs for map and filter there are two
additions to the technique. Firstly we must strengthen the induction property to cover
all the stream modes (in this case Left and Right). Secondly to handle asymmetry in
the induction property we can use anti-symmetry to partition the induction property
and treat different fixpoints independently.

We see that the form of the function mirrors the form of the proof. Note in particular
how the dependencies between induction properties in the induction steps mirrors the
dependencies between stages of evaluation in the function.

3.9.6 zips/zip

The proof for the zips/zip example is substantially similar to that for append s/append .
In particular it requires strengthening the induction hypothesis and using anti-symmetry.
We will find that one part of the proof needs an additional technique; rather than the
standard proof scheme for fixpoint induction we have used so far, we will need to use
fixpoint induction in two variables. We will see that the need for the additional technique
is yet another instance of the form of the proof reflecting the form of the recursion in the
function.

The standard list function zip is

Definition 3.9.15 (zip function).

zip :: [a ]→ [b ]→ [(a, b)]
zip [ ] ys = [ ]
zip xs [ ] = [ ]
zip (x : xs) (y : ys) = (x , y) : zip xs ys
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The corresponding stream version is as follows.

Definition 3.9.16 (zips function).

zip :: Stream a → Stream b → Stream (a, b)
zip (Stream nexta sa) (Stream nextb sb) =
Stream (next zip nexta nextb) (sa , sb ,Nothing)

next zip nexta nextb (sa , sb ,Nothing) =
case nexta sa of
Done → Done
Skip s ′a → Skip (s ′a , sb ,Nothing)
Yield a s ′a → Skip (s ′a , sb , Just a)

next zip nexta nextb (s
′
a , sb , Just a) =

case nextb sb of
Done → Done
Skip s ′b → Skip (s ′a , s

′
b , Just a)

Yield b s ′b → Yield (a, b) (s ′a , s
′
b ,Nothing)

As was the case for append s we have two modes for next zip. Unlike with append s , the
two modes here are mutually dependent. The initial mode is Nothing and when it has
obtained an element from the first stream it moves into the Just a mode. After yielding
a pair it moves back into the Nothing mode. The induction hypothesis will have to cover
both modes.

Theorem 3.9.17 (zips/zip abstraction property).

unstream (zips a b) = zip (unstream a) (unstream b)

Proof. We start by unfolding definitions. For non-⊥ streams a and b we have

unstream (zips (Stream nexta sa) (Stream nextb sb))
= zip (unstream (Stream nexta sa)) (unstream (Stream nextb sb))

and unfolding unstream and zips gives us

Property 3.9.18 (Mode Nothing).

unfoldStep (next zip nexta nextb) (sa , sb ,Nothing)
= zip (unfoldStep nexta sa) (unfoldStep nextb sb)

Note that the property mentions only the Nothing mode and not the Just a mode. In
the Yield case we will need a property about the Just a mode. We can either guess what
it should be or we do a trial derivation. It turns out to be

Property 3.9.19 (Mode Just a).

unfoldStep (next zip nexta nextb) (sa , sb , Just a)
= zip (a : unfoldStep nexta sa) (unfoldStep nextb sb)



CHAPTER 3. STREAM FUSION IS CORRECT 114

This is perhaps not surprising as it expresses precisely the purpose of the Just a mode;
that it represents the stage of evaluation of zip where only an element from the first
stream/list is known.

It is not immediately obvious how to formulate our fixpoint induction property, however it
is clear that it must have clauses covering both properties above and that it will abstract
over occurrences of unfoldStep . Following our experience with append s it is clear that we
cannot have a single equational induction property that abstracts simultaneously over
all occurrences of unfoldStep . This is because we do not want to unroll all the unfoldStep

occurrences simultaneously. The structure of the recursion in zips is that we alternate
between modes. In the proof we must also alternate between unrolling the unfoldStep

occurrences corresponding to the first and second input streams.

Since we will treat different occurrences of unfoldStep separately we will again have to
use anti-symmetry. To help keep concise the statements of induction goals and induction
properties we will define parametrised versions of the left and right hand side expressions,
parametrising independently over each occurrence of unfoldStep .

LHS a g1 = g1 (next zip nexta nextb) (sa , sb ,Nothing)
RHS a g2 g3 = zip (g2 nexta sa) (g3 nextb sb)

LHS b g1 = g1 (next zip nexta nextb) (sa , sb , Just a)
RHS b g2 g3 = zip (a : g2 nexta sa) (g3 nextb sb)

The LHS a and RHS a expressions correspond to the two sides of the property of the
Nothing mode while the LHS b and RHS b expressions correspond to the Just a mode.

We can now state the goal that we seek to prove by fixpoint induction as

LHS a unfoldStep ⊑ RHS a unfoldStep unfoldStep

LHS a unfoldStep ⊒ RHS a unfoldStep unfoldStep

LHS b unfoldStep ⊑ RHS b unfoldStep unfoldStep

LHS b unfoldStep ⊒ RHS b unfoldStep unfoldStep

We now seek to formulate the induction property or properties. For the ⊑ direction we
can abstract over the unfoldStep on the left giving us

Pa g ⇐⇒ LHS a g ⊑ RHS a unfoldStep unfoldStep

Pb g ⇐⇒ LHS b g ⊑ RHS b unfoldStep unfoldStep

P g ⇐⇒ Pa g ∧ Pb g

For the ⊒ direction however it is less clear how to formulate an induction property since
we have two occurrences of unfoldStep and we know that we will need to alternate between
unrolling the two occurrences rather than unrolling both simultaneously. We will do
the induction for the ⊑ direction using the induction property P and return to the ⊒
direction later.

As usual, the P ⊥ case is easy, relying on the fact that zip is strict in its first argument.

As before, the approach for the P (h g) step is to unfold LHS a (h g), RHS a (h g) g ′,
LHS b (h g), RHS b g ′ (h g) and to tabulate the resulting expressions for each case of
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nexta sa/nextb sb. We then compare table entries to check the two refinements hold,
with suitable application of the induction hypothesis P g .

For the induction step we must verify Pa (h g) ∧ Pb (h g)⇐= Pa g ∧ Pb g . We will start
with the Pa part Pa (h g)⇐= Pa g ∧ Pb g , so we unfold definitions for both LHS a (h g)

LHS a (h g)
=
h g (next zip nexta nextb) (sa , sb ,Nothing)

=
case next zip nexta nextb (sa , sb ,Nothing) of
Done → [ ]
Skip s ′ → g (next zip nexta nextb) s

′

Yield x s ′ → x : g (next zip nexta nextb) s
′

=
case (case nexta sa of

Done → Done
Skip s ′a → Skip (s ′a , sb ,Nothing)
Yield a s ′a → Skip (s ′a , sb , Just a))

of
Done → [ ]
Skip s ′ → g (next zip nexta nextb) s

′

Yield x s ′ → x : g (next zip nexta nextb) s
′

=
case nexta sa of
Done → [ ]
Skip s ′a → g (next zip nexta nextb) (s

′
a , sb ,Nothing)

Yield a s ′a → g (next zip nexta nextb) (s
′
a , sb , Just a)

and RHS a (h g) g ′

RHS a (h g) g ′

=
zip (h g nexta sa) (g

′ nextb sb)
=
zip (case nexta sa of

Done → [ ]
Skip s ′a → g nexta s ′a
Yield a s ′a → a : g nexta s ′a)

(g ′ nextb sb)
=
case nexta sa of
Done → [ ]
Skip s ′a → zip ( g nexta s ′a) (g

′ nextb sb)
Yield a s ′a → zip (a : g nexta s ′a) (g

′ nextb sb)
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Tabulating the results we have

nexta sa LHS a (h g) RHS a (h g) g ′

⊥ ⊥ ⊥
Done [ ] [ ]
Skip s ′a g (next zip nexta nextb) (s

′
a , sb ,Nothing) zip (g nexta s ′a) (g

′ nextb sb)
Yield a s ′a g (next zip nexta nextb) (s

′
a , sb , Just a) zip (a : g nexta s ′a) (g

′ nextb sb)

Proving Pa (h g) ⇐= Pa g ∧ Pb g means checking that the following property holds,
given the induction hypothesis

LHS a (h g) ⊑ RHS a unfoldStep unfoldStep

We can check this property by comparing table entries in each of the four cases of
nexta sa . Recall that unfoldStep = h unfoldStep and so we can use the tables to look up
RHS a unfoldStep unfoldStep .

The ⊥ and Done cases are trivial since they are equal. For Skip it is a simple application
of the Pa g part of induction hypothesis. For Yield we apply the Pb g part of the
induction hypothesis.

We now move on to the Pb part of the induction step: Pb (h g) ⇐= Pa g ∧ Pb g . We
unfold definitions for LHS b (h g)

LHS b (h g)
=
h g (next zip nexta nextb) (sa , sb , Just a)

=
case next zip nexta nextb (sa , sb , Just a) of
Done → [ ]
Skip s ′ → g (next zip nexta nextb) s

′

Yield x s ′ → x : g (next zip nexta nextb) s
′

=
case (case nextb sb of

Done → Done
Skip s ′b → Skip (s ′a , s

′
b , Just a)

Yield b s ′b → Yield (a, b) (s ′a , s
′
b ,Nothing))

of
Done → [ ]
Skip s ′ → g (next zip nexta nextb) s

′

Yield x s ′ → x : g (next zip nexta nextb) s
′

=
case nextb sb of
Done → [ ]
Skip s ′b → g (next zip nexta nextb) (s

′
a , s

′
b , Just a)

Yield b s ′b → (a, b) : g (next zip nexta nextb) (s
′
a , s

′
b ,Nothing)
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and RHS b g (h g ′)

RHS b g (h g ′)
=
zip (a : g nexta sa) (g

′ nextb sb)
=
zip (a : g nexta sa)

(case nextb sb of
Done → [ ]
Skip s ′b → g ′ nextb s

′
b

Yield b s ′b → b : g ′ nextb s
′
b)

=
case nextb sb of
Done → zip (a : g nexta sa) [ ]
Skip s ′b → zip (a : g nexta sa) ( g ′ nextb s

′
b)

Yield b s ′b → zip (a : g nexta sa) (b : g
′ nextb s

′
b)

=
case nextb sb of
Done → [ ]
Skip s ′b → zip (a : g nexta sa) (g

′ nextb s
′
b)

Yield b s ′b → (a, b) : zip (g nexta sa) (g
′ nextb s

′
b)

Tabulating the results we have

nextb sb LHS b (h g)
⊥ ⊥
Done [ ]
Skip s ′b g (next zip nexta nextb) (s

′
a , s

′
b , Just a)

Yield a s ′b (a, b) : g (next zip nexta nextb) (s
′
a , s

′
b ,Nothing)

nextb sb RHS b g (h g ′)
⊥ ⊥
Done [ ]
Skip s ′b zip (a : g nexta sa) (g

′ nextb s
′
b)

Yield a s ′b (a, b) : zip (g nexta sa) (g
′ nextb s

′
b)

We now use the table to check that the following property holds given the induction
hypothesis

LHS b (h g) ⊑ RHS b unfoldStep unfoldStep

The ⊥ and Done cases are again trivial. For Skip we apply Pb g and for Yield we apply
Pa g .

So we have checked both Pa (h g)⇐= Pa g ∧ Pb g and Pb (h g)⇐= Pa g ∧ Pb g . So we
have P (h g)⇐= P g and by fixpoint induction we have P (fix h) = P unfoldStep . Note
that each part Pa (h g) and Pb (h g) required both Pa g and Pb g . This is due to the
fact that the Nothing and Just a modes depend on each other.
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We now return to the ⊒ direction. Recall that our goal here is to show

LHS a unfoldStep ⊒ RHS a unfoldStep unfoldStep

LHS b unfoldStep ⊒ RHS b unfoldStep unfoldStep

We need to do this by fixpoint induction over the unfoldStep fixpoints on the right hand
side. The problem we face in formulating an induction property is that we will need to
unroll the two unfoldStep occurrences alternately rather than simultaneously. Instead of
guessing up front we will look at the unfoldings of both sides and see what we can prove
and work backwards to a supportable induction property.

We can reuse the parametrised tables of unfoldings we produced previously. Firstly for
the LHS a and RHS a

nexta sa LHS a (h g)
⊥ ⊥
Done [ ]
Skip s ′a g (next zip nexta nextb) (s

′
a , sb ,Nothing)

Yield a s ′a g (next zip nexta nextb) (s
′
a , sb , Just a)

nexta sa RHS a (h g) g ′

⊥ ⊥
Done [ ]
Skip s ′a zip (g nexta s ′a) (g

′ nextb sb)
Yield a s ′a zip (a : g nexta s ′a) (g

′ nextb sb)

We instantiate the left hand side with g := unfoldStep and on the right hand side use g
and g ′ as is and then we consider the two interesting cases of Skip and Yield . For Skip
we have

unfoldStep (next zip nexta nextb) (s
′
a , sb ,Nothing)

⊒ zip (g nexta s ′a) (g
′ nextb sb)

The left hand side here is exactly LHS a unfoldStep while the right is exactly RHS a g g ′.
For Yield we have

unfoldStep (next zip nexta nextb) (s
′
a , sb , Just a)

⊒ zip (a : g nexta s ′a) (g
′ nextb sb)

The left hand side here is exactly LHS b unfoldStep while the right is exactly RHS b g g ′.
Collecting these two we see that we can prove

LHS a unfoldStep ⊒ RHS a (h g) g ′ ⇐= LHS a unfoldStep ⊒ RHS a g g ′

∧ LHS b unfoldStep ⊒ RHS b g g ′

We can restate this more concisely if we define Qa and Qb by

Qa g g ′ ⇐⇒ LHS a unfoldStep ⊒ RHS a g g ′

Qb g g ′ ⇐⇒ LHS b unfoldStep ⊒ RHS b g g ′

It then becomes

Qa (h g) g ′ ⇐= Qa g g ′ ∧ Qb g g ′
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We now turn to the second part and the tables for LHS b and RHS b

nextb sb LHS b (h g)
⊥ ⊥
Done [ ]
Skip s ′b g (next zip nexta nextb) (s

′
a , s

′
b , Just a)

Yield a s ′b (a, b) : g (next zip nexta nextb) (s
′
a , s

′
b ,Nothing)

nextb sb RHS b g (h g ′)
⊥ ⊥
Done [ ]
Skip s ′b zip (a : g nexta sa) (g

′ nextb s
′
b)

Yield a s ′b (a, b) : zip (g nexta sa) (g
′ nextb s

′
b)

Again we instantiate the left hand side with g := unfoldStep and on the right hand side
we use g and g ′ unchanged. The Skip and Yield cases are then

unfoldStep (next zip nexta nextb) (s
′
a , s

′
b , Just a)

⊒ zip (a : g nexta sa) (g
′ nextb s

′
b)

and

(a, b) : unfoldStep (next zip nexta nextb) (s
′
a , s

′
b ,Nothing)

⊒ (a, b) : zip (g nexta sa) (g
′ nextb s

′
b)

The first is an instance of LHS b unfoldStep ⊒ RHS b g g ′ while the second reduces to an
instance of LHS a unfoldStep ⊒ RHS a g g ′. So we can summarise what we can show here
as

Qb (h g) g ′ ⇐= Qa g g ′ ∧ Qb g g ′

Putting the two parts together we are saying that we can show

Qa (h g) g ′ ⇐= Qa g g ′ ∧ Qb g g ′

Qb g (h g ′)⇐= Qa g g ′ ∧ Qb g g ′

That is, we are looking for an induction principle in two variables that lets us prove two
related properties. In the induction step each property depends both on itself and on the
other property. Fortunately there is a suitable proof scheme for fixpoint induction in two
variables.

Property 3.9.20 (Fixpoint induction proof scheme in two variables).

A ⊥ y ∧ ∀x y . A x y ∧ B x y ⇒ A (f x ) y
B x ⊥ ∧ ∀x y . A x y ∧ B x y ⇒ B x (g y)

=⇒
A (fix f ) (fix g) ∧ B (fix f ) (fix g)
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We can instantiate this proof scheme with both f and g as h and using Qa and Qb . We
have already checked the induction step above so we need only check that

Qa ⊥ g ′ ∧ Qb g ⊥

The first reduces to checking that zip ⊥ ys = ⊥ and the second reduces to checking
zip (x : xs) ⊥ = ⊥. Both are true.

Thus we can conclude Qa unfoldStep unfoldStep ∧ Qb unfoldStep unfoldStep which was our
goal for the ⊒ direction.

3.9.7 concatMaps/concatMap

Definition 3.9.21 (concatMap function).

concatMap f [ ] = [ ]
concatMap f (a : as) = f a ++ concatMap f as

Definition 3.9.22 (concatMaps function).

concatMaps :: (a → Stream b)→ Stream a → Stream b
concatMaps f (Stream nexta sa) =
Stream (nextconcatMap nexta) (sa ,Nothing)

nextconcatMap nexta (sa ,Nothing) =
case nexta sa of
Done → Done
Skip s ′a → Skip (s ′a ,Nothing)
Yield a s ′a → Skip (s ′a , Just (f a))

nextconcatMap nexta (sa , Just (Stream nextb sb)) =
case nextb sb of
Done → Skip (sa ,Nothing)
Skip s ′b → Skip (sa , Just (Stream nextb s

′
b))

Yield b s ′b → Yield b (sa , Just (Stream nextb s
′
b))

The key feature is that we have an outer stream and an inner stream. There are two
modes. In the Nothing mode it tries to obtain an element from the outer stream, giving
it a new inner stream. In the Just mode it yields elements one by one from the inner
stream. When the inner stream is exhausted it switches back to the first mode.

The proof for the concatMap example is similar to that for append , though there are
superficial similarities with zip. Like zips , concatMaps has two modes which are mutually
dependent. We will again have an induction hypothesis in two parts, one for each mode.
We use anti-symmetry and prove each direction as a separate induction. Although we
alternate between unrolling the inner and outer streams, we will not need (and not
be able) to use the technique from the zip example of doing fixpoint induction in two
variables. Instead, like append s we will use a secondary induction, though in this case it
will be a nested induction, reflecting the nesting of the two streams in concatMaps .
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Theorem 3.9.23 (concatMaps/concatMap abstraction property).

unstream ◦ concatMaps fs = concatMap (unstream ◦ fs) ◦ unstream

Proof. We start by applying each side to a non-⊥ stream Stream nexta sa

unstream (concatMaps fs (Stream nexta sa))
= concatMap (unstream ◦ fs) (unstream (Stream nexta sa))

Unfolding definitions gives us

unfoldStep (nextconcatMap fs nexta) (sa ,Nothing)
= concatMap (unstream ◦ fs) (unfoldStep nexta sa)

This gives us our goal for the Nothing mode. We will need to find a similar property for
the Just mode.

We define parametrised left and right hand sides for this first equation

LHS a g = g (nextconcatMap fs nexta) (sa ,Nothing)

RHS a g = concatMap (unstream ◦ fs) (g nexta sa)

The first part of the induction property will be

Pa g ⇐⇒ LHS a g ⊑ RHS a unfoldStep

Qa g ⇐⇒ LHS a unfoldStep ⊒ RHS a g

To find the second part of the induction property we will explore by unfolding LHS a (h g)
and RHS a (h g)

LHS a (h g)
=
h g (nextconcatMap fs nexta) (sa ,Nothing)

=
case nextconcatMap fs nexta (sa ,Nothing) of
Done → [ ]
Skip s ′ → g (nextconcatMap fs nexta) s

′

Yield x s ′ → x : g (nextconcatMap fs nexta) s
′

=
case (case nexta sa of

Done → Done
Skip s ′a → Skip (s ′a ,Nothing)
Yield a s ′a → Skip (s ′a , Just (f a)))

of
Done → [ ]
Skip s ′ → g (nextconcatMap fs nexta) s

′

Yield x s ′ → x : g (nextconcatMap fs nexta) s
′

=
case nexta sa of
Done → [ ]
Skip s ′a → g (nextconcatMap fs nexta) (s

′
a ,Nothing)

Yield a s ′a → g (nextconcatMap fs nexta) (s
′
a , Just (f a))
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And for the right hand side

RHS a (h g) g ′

=
concatMap (unstream ◦ fs) (h g nexta sa)

=
concatMap (unstream ◦ fs) (case nexta sa of

Done → [ ]
Skip s ′a → g nexta s ′a
Yield a s ′a → a : g nexta s ′a)

=
case nexta sa of
Done → concatMap (unstream ◦ fs) [ ]
Skip s ′a → concatMap (unstream ◦ fs) ( g next s ′a)
Yield a s ′a → concatMap (unstream ◦ fs) (a : g next s ′a)

=
case nexta sa of
Done → [ ]
Skip s ′a → concatMap (unstream ◦ fs) (g next s ′a)
Yield a s ′a → unstream (fs a) ++ concatMap (unstream ◦ fs) (g next s ′a)

The Yield case is the interesting one. In the right hand side we have

unstream (fs a) ++ concatMap (unstream ◦ fs) (g next s ′a)

If we use the assumption that f a ̸≡ ⊥ then we can substitute f a for an arbitrary stream
Stream nextb sb and then unfold unstream to get

unfoldStep nextb sb ++ concatMap (unstream ◦ fs) (g next s ′)

So in the Yield case showing Pa (h g) and Qa (h g) amounts to showing both

g (nextconcatMap fs nexta) (s
′
a , Just (Stream nextb sb))

⊑ unfoldStep nextb sb ++ concatMap (unstream ◦ fs) (unfoldStep next s ′a)

unfoldStep (nextconcatMap fs nexta) (s
′
a , Just (Stream nextb sb))

⊒ unfoldStep nextb sb ++ concatMap (unstream ◦ fs) (g next s ′a)

For the ⊑ direction we can reasonably expect that we can simply add this to the induction
hypothesis as the property for the Just mode. For the ⊒ direction we might expect that
we can reuse the technique from the proof for zip and parametrise over the unfoldStep

in the right hand side and then do an induction in two variables. This will not work
however. We might imagine a property like

unfoldStep (nextconcatMap fs nexta) (s
′
a , Just (Stream nextb sb))

⊒ g ′ nextb sb ++ concatMap (unstream ◦ fs) (g next s ′a)

However we would not be able to ‘connect up’ to such an induction property because we
would need a g ′ in the first part of our induction property for the Nothing mode. The
reason we cannot do that is because it would have to abstract over the unfoldStep implicit
in the unstream ◦ fs part.
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We would then have a right hand side like

g ′ nextb sb ++ concatMap (case Stream g ′ ◦ fs) (g next s ′a)

but in this mode we only want to unroll the unfoldStep to the left of the ++, leaving the
other instance alone.

Instead we simply prove the ⊒ direction by another nested fixpoint induction. It really
is nested because it turns out that the Done case of the inner induction relies on the
induction hypothesis of the outer induction. This mirrors the nested nature of the streams
in the concatMaps function.

Let us now define parametrised left and right hand sides for the property for the Just
mode

LHS b g = g (nextconcatMap fs nexta) (s
′
a , Just (Stream nextb sb))

RHS b g g ′ = g ′ nextb sb ++ concatMap (unstream ◦ fs) (g next s ′)

The second part of the induction property is just

Pb g ⇐⇒ LHS b g ⊑ RHS b unfoldStep unfoldStep

We do not include the ⊒ direction in the induction hypothesis because we do not need it.

We now review the overall structure of the induction proof. We will have three separate
inductions, one for the ⊑ direction, one for the ⊒ direction and a third nested induction
used in the induction step of the induction for the ⊒ direction.

For the ⊑ direction we use the induction property

P g ⇐⇒ Pa g ∧ Pb g

Pa g ⇐⇒ LHS a g ⊑ RHS a unfoldStep

Pb g ⇐⇒ LHS b g ⊑ RHS b unfoldStep unfoldStep

For the ⊒ direction we use the induction property

Q g ⇐⇒ Qa g

Qa g ⇐⇒ LHS a unfoldStep ⊒ RHS a g

These are both simple inductions in one variable. The induction steps will require us to
show

Pa (h g) ⇐= Pa g ∧ Pb g
Pb (h g) ⇐= Pa g ∧ Pb g

Qa (h g)⇐= Qa g

For the nested induction we will use

Qb g g ′ ⇐⇒ LHS b unfoldStep ⊒ RHS b g g ′

We do induction in the g ′ parameter, with g kept constant. The induction step will be

Qb g (h g ′)⇐= Qb g g ′ ∧ Qa g

Note that it uses Qa the induction hypothesis of the outer induction.
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The conclusion of the nested induction therefore also needs Qa as an assumption

Qb g unfoldStep ⇐= Qa g

We should first check the ⊥ cases of each induction property. As usual they are all
straightforward. Pa ⊥ and Pb ⊥ are trivial while Qa ⊥ relies on the strictness of
concatMap in its list argument and and Qb ⊥ relies on ++ being strict in its first
argument.

Before we can check all the induction steps, we need to unfold LHS b (h g) and
RHS b g (h g ′)

LHS b (h g)
=
h g (nextconcatMap fs next) (s , Just (Stream nextb sb))

=
case nextconcatMap fs next (s , Just (Stream nextb sb)) of
Done → [ ]
Skip s ′ → g (nextconcatMap fs next) s

′

Yield x s ′ → x : g (nextconcatMap fs next) s
′

=
case (case nextb sb of

Done → Skip (sa ,Nothing)
Skip s ′b → Skip (sa , Just (Stream nextb s

′
b))

Yield b s ′b → Yield b (sa , Just (Stream nextb s
′
b)))

of
Done → [ ]
Skip s ′ → g (nextconcatMap fs nexta) s

′

Yield x s ′ → x : g (nextconcatMap fs nexta) s
′

=
case nextb sb of
Done → g (nextconcatMap fs next) (s ,Nothing)
Skip s ′b → g (nextconcatMap fs next) (s , Just (Stream nextb s

′
b))

Yield b s ′b → b : g (nextconcatMap fs next) (s , Just (Stream nextb s
′
b))

And for the right hand side

RHS b g (h g ′)
=
h g ′ nextb sb ++ concatMap (unstream ◦ fs) (g nexta sa)

=
(case nextb sb

Done → [ ]
Skip s ′b → g ′ nextb s

′
b

Yield b s ′b → b : g ′ nextb s
′
b

)
++ concatMap (unstream ◦ fs) (g nexta sa)

=
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=
case nextb sb
Done → [ ] ++ concatMap (unstream ◦ fs) (g nexta sa)
Skip s ′b → g ′ nextb s

′
b ++ concatMap (unstream ◦ fs) (g nexta sa)

Yield b s ′b → b : g ′ nextb s
′
b ++ concatMap (unstream ◦ fs) (g nexta sa)

=
case nextb sb
Done → concatMap (unstream ◦ fs) (g nexta sa)
Skip s ′b → g ′ nextb s

′
b ++ concatMap (unstream ◦ fs) (g nexta sa)

Yield b s ′b → b : g ′ nextb s
′
b ++ concatMap (unstream ◦ fs) (g nexta sa)

We now tabulate LHS a (h g) with RHS a (h g) and also LHS b (h g) with RHS b (h g)

nexta sa LHS a (h g)
⊥ ⊥
Done [ ]
Skip s ′a g (nextconcatMap fs nexta) (s

′
a ,Nothing)

Yield a s ′a g (nextconcatMap fs nexta) (s
′
a , Just (Stream nextb sb))

nexta sa RHS a (h g)
⊥ ⊥
Done [ ]
Skip s ′a concatMap (unstream ◦ fs) (g next s ′a)
Yield a s ′a unfoldStep nextb sb ++ concatMap (unstream ◦ fs) (g next s ′a)

nextb sb LHS b (h g)
⊥ ⊥
Done g (nextconcatMap fs next) (s ,Nothing)
Skip s ′a g (nextconcatMap fs next) (s , Just (Stream nextb s

′
b))

Yield a s ′a b : g (nextconcatMap fs next) (s , Just (Stream nextb s
′
b))

nextb sb RHS b g (h g ′)
⊥ ⊥
Done concatMap (unstream ◦ fs) (g nexta sa)
Skip s ′a g ′ nextb s

′
b ++ concatMap (unstream ◦ fs) (g nexta sa)

Yield a s ′a b : g ′ nextb s
′
b ++ concatMap (unstream ◦ fs) (g nexta sa)

Recall the definitions

Pa g ⇐⇒ LHS a g ⊑ RHS a unfoldStep

Pb g ⇐⇒ LHS b g ⊑ RHS b unfoldStep unfoldStep

Qa g ⇐⇒ LHS a unfoldStep ⊒ RHS a g
Qb g g ′ ⇐⇒ LHS b unfoldStep ⊒ RHS b g g ′
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We now need to check the induction steps for each of the four cases by reading off the
above tables

Pa (h g) ⇐= Pa g ∧ Pb g
Pb (h g) ⇐= Pa g ∧ Pb g

Qa (h g) ⇐= Qa g ∧ Qb g unfoldStep

Qb g (h g ′)⇐= Qa g ∧ Qb g g ′

Most of the 16 cases are easy and uninteresting. The ⊥ cases are trivial, as are the
Done cases for Pa and Qa . All the Skip cases are straightforward applications of the
corresponding part of the induction hypothesis, as is the Yield case for Pb and Qb . The
interesting cases are the transitions between the modes, in particular the Yield case for
Pa (h g) / Qa (h g) and the Done case for Pb (h g) / Qb g (h g ′).

In the Yield case for Pa (h g) we have

g (nextconcatMap fs nexta) (s
′
a , Just (Stream nextb sb))

⊑ unfoldStep nextb sb ++ concatMap (unstream ◦ fs) (unfoldStep next s ′a)

which is just Pb g . For Qa (h g) we have

unfoldStep (nextconcatMap fs nexta) (s
′
a , Just (Stream nextb sb))

⊒ unfoldStep nextb sb ++ concatMap (unstream ◦ fs) (g next s ′a)

which is Qb g unfoldStep. That is, it is the conclusion of the nested fixpoint induction
with the Qb property. As we stated previously, using this conclusion requires that we
have the assumption Qa g , which is just the induction hypothesis in this case.

In the Done case for Pb (h g) we have

g (nextconcatMap fs next) (s ,Nothing)
⊑ concatMap (unstream ◦ fs) (unfoldStep nexta sa)

which is Qa g which is the induction hypothesis of the outer induction. In the Done case
for Qb g (h g ′) we have

unfoldStep (nextconcatMap fs next) (s ,Nothing)
⊒ concatMap (unstream ◦ fs) (g nexta sa)

which is Qa g .

3.9.8 A handle-turning method

Having looked at three non-trivial examples we are interested in whether there is a
general method or general heuristics for finding proofs for these kinds of problems. These
proofs all end up with a few inductions using a few induction properties. Once we have
arrived at the right induction properties and induction schemes then proving all the
induction steps is fairly straightforward. The question is whether there is a reliable
method to find what the appropriate induction properties and induction schemes are,
without too much guesswork or trial and error experimentation.
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Comparing the three examples, append , zip and concatMap, they have many superficial
similarities. They all take two input streams and the output stream has a stepper function
with two modes. The proofs are also superficially similar: the induction properties have
a clause for each of the two modes and we do independent inductions for the ⊑ and
⊒ directions. There are also significant differences. Given our aim of finding a handle-
turning method it is initially somewhat worrying that each proof uses different induction
patterns. The proof for append uses two separate inductions with one relying on the
other. The zip proof uses a fixpoint induction in two variables and the concatMap proof
uses two inductions, one nested in the other.

One way to see a greater degree of commonality is to look at the induction steps in
each proof. The induction steps can be viewed as dependencies between the induction
properties. Below are the induction steps for the three examples. While the LHS and
RHS terms are of course different for each example, the Px and Qx properties are more
or less the same.

So we have LHS and RHS for each clause (a and b here) and each term has one or more
parameters.

LHS a g = . . .
RHS a g g ′ = . . .

LHS b g = . . .
RHS b g g ′ = . . .

This example happens to be for zip. Then we have properties for each clause, a Px

property in the ⊑ direction and a similar Qx property in the ⊒ direction.

Pa g ⇐⇒ LHS a g ⊑ RHS a unfoldStep unfoldStep

Pb g ⇐⇒ LHS b g ⊑ RHS b unfoldStep unfoldStep

Qa g g ′ ⇐⇒ LHS a unfoldStep ⊒ RHS a g g ′

Qb g g ′ ⇐⇒ LHS b unfoldStep ⊒ RHS b g g ′

Again this example is for zip but the others differed only in the number of parameters
for the LHS/RHS terms. In particular the parameters for Px and Qx are always on the
lesser side of the ⊑/⊒ ordering.

Then we have the induction steps expressed in terms of the Px and Qx properties. For
append s/append we had

Pa (h g)⇐= Pa g ∧ Pb g
Pb (h g)⇐= Pb g

Qa (h g)⇐= Qa g ∧ Qb unfoldStep

Qb (h g)⇐= Qb g

For zips/zip we had

Pa (h g) ⇐= Pa g ∧ Pb g
Pb (h g) ⇐= Pa g ∧ Pb g

Qa (h g) g ′ ⇐= Qa g g ′ ∧ Qb g g ′

Qb g (h g ′)⇐= Qa g g ′ ∧ Qb g g ′
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For concatMaps/concatMap we had

Pa (h g) ⇐= Pa g ∧ Pb g
Pb (h g) ⇐= Pa g ∧ Pb g

Qa (h g) ⇐= Qa g ∧ Qb g unfoldStep

Qb g (h g ′)⇐= Qa g ∧ Qb g g ′

This is where we see the interesting differences, especially in the Qx properties.

The key idea is that we should derive the induction scheme from the pattern of dependen-
cies between the properties. In the zip example the pattern of dependencies between Qa

and Qb tells us that we should use fixpoint induction in two variables. In the concatMap
example the dependencies between Qa and Qb points us in the direction of using two
nested fixpoint inductions.

So the idea is that it is rather easier to discover the dependencies between the Px and
Qx properties than it is to guess upfront what the appropriate fixpoint induction scheme
should be (which would in turn determine what induction step properties we would need
to show).

Looking at it this way should lift our worries about the fact that we end up with such a
diversity of patterns of fixpoint induction. The pattern is a consequence of the pattern of
dependencies between the various induction properties which in turn is a consequence of
the pattern of state transitions in the stream function. For example if we tried to prove
the abstraction property for zip5 s/zip5 then we would expect to en up with five Px and
Qx properties and we would expect the Qx properties to depend on each other in a cyclic
pattern. We would then use fixpoint induction in five variables.

Of course there is also the matter of how to discover the right induction properties. The
method is as follows. We start from the original statement of the theorem. We unfold
definitions to exposes the key fixpoints and this gives us our first equation LHS a = RHS a .
Unrolling the key fixpoints may lead to a number of other equations, one for each mode
of the output stream.

LHS a = RHS a ,LHS b = RHS b , . . .

From these equations we extract left and right hand side terms and we parametrise them
over the fixpoint functions that we had to unroll at any stage

LHS a g1 . . . gn = RHS a g1 . . . gm , . . .

Next we define Px and Qx properties by splitting each equation using anti-symmetry. The
Px properties are parametrised by the same parameters as the LHS a and respectively for
the Qx .

Pa g1 . . . gn ⇐⇒ LHS a g1 . . . gn ⊑ RHS a (fix h) . . . (fix h)
Qa g1 . . . gm ⇐⇒ LHS a (fix h) . . . (fix h) ⊒ RHS a g1 . . . gm

We next want to look at Px/Qx with some parameters set to h gi and others remaining
as gj . The ones where we use h gi are those that stand for fixpoints that we unrolled at
the earlier stage when finding all the equations. For example with concatMap for Qb we
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gave two parameters but only one of them gets unrolled when unfolding definitions in
LHS b = RHS b .

Then we unfold each Px/Qx with the appropriate parameters set to h gi and do the
appropriate case analysis. Now we look at which other Px/Qx properties are needed to
prove each case. This gives us a pattern of induction steps like in the three examples
above.

As a hypothetical example, consider zip5 s/zip5 . The theorem is

unstream (zip5 s a b c d e) = zip5 (unstream a) . . . (unstream e)

We unfold this to expose the unfoldStep fixpoint, giving us our first equation.

unfoldStep (next zip5 nexta . . . nexte) (Mode1 sa . . . se)
= zip5 (unfoldStep nexta sa) . . . (unfoldStep nexte se)

Now we unroll the first unfoldStep and look at the four cases of nexta sa . The ⊥ and [ ]
cases do not give us any new non-trivial equations. The Skip case will of course give us
another instance of the same equation. Only the Yield case will give us a new equation

unfoldStep (next zip5 nexta . . . nexte) (Mode2 s ′a . . . se a)
= zip5 (unfoldStep nexta s ′a) . . . (unfoldStep nexte se)

We would continue this process of unrolling until we get no new equations. In our zip5
example the final equation would be

unfoldStep (next zip5 nexta . . . nexte) (Mode5 s ′a . . . se a b c d)
= zip5 (unfoldStep nexta s ′a) . . . (unfoldStep nexte se)

which in the Yield case would go back to Mode1 and be an instance of the first equation.
So we end up with five equations.

The next step is to define LHS x/RHS x terms parametrised over the fixpoint functions
that we had to unroll. Note that in the five right hand side terms we only unrolled one
unfoldStep per equation but overall we ended up unrolling them all. So we parametrise
RHS x with g1 . . g5 over all five occurrences.

Next we define the Px and Qx properties

Pa g = LHS a g ⊑ RHS a (fix h) . . . (fix h)
Pb g = LHS b g ⊑ RHS b (fix h) . . . (fix h)
. . .

Qa g1 . . . g5 = LHS a (fix h) ⊒ RHS a g1 . . . g5
Qb g1 . . . g5 = LHS b (fix h) ⊒ RHS b g1 . . . g5
. . .

Next we need to look at Pa (h g),Pb (h g), . . . and similarly for Qa ,Qb , . . .. For the Qx

properties we use h gi for the parameters corresponding to the fixpoints we unrolled to
get the original five equations. Recall that we only unrolled one occurrence of unfoldStep

in each equation to get the next.
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So we want to look at

Qa (h g1) g2 g3 g4 g5
Qb g1 (h g2) g3 g4 g5
. . .
Qe g1 g2 g3 g4 (h g5)

For each Px/Qx above we unfold definitions and look at the cases (possibly using a
table). We need to prove the property in each case of nextx sx and we look at what other
properties Px/Qx we need. In the zip5 example we will find that we can prove

Pa (h g)⇐= Pa g ∧ Pb g
Pb (h g)⇐= Pb g ∧ Pc g
. . .
Pe (h g)⇐= Pe g ∧ Pa g

Qa (h g1) g2 . . . g5 ⇐= Qa g1 . . . g5 ∧ Qb g1 . . . g5
Qb g1 (h g2) . . . g5 ⇐= Qb g1 . . . g5 ∧ Qc g1 . . . g5
. . .
Qe g1 g2 . . . (h g5) ⇐= Qe g1 . . . g5 ∧ Qa g1 . . . g5

Looking at this dependency pattern we decide that the appropriate choice for the Px

properties is to add them all into a single five-clause induction hypothesis and use ordinary
fixpoint induction in a single variable. For the Qx properties on the other hand we need
to use fixpoint induction in five variables for all five properties.

3.10 Stream fusion for abstract types

The initial motivation for stream fusion was to fuse functions on sequences represented as
arrays (Coutts et al., 2007a). In our formal treatment thus far we have only considered
stream fusion for (co)data types defined as the fixpoint of a functor. Arrays are not such
a type.

Another touted promise of stream fusion is that it is potentially a generic framework
that could operate over any sequence type for which one can define suitable stream and
unstream functions. In particular there is the hope that it should be possible for functions
on streams to be defined once and reused multiple times with different sequence types.

At the time of writing there have been at least five full-scale implementations of sequence
libraries using stream fusion. Of these, only one is for lists while the others are for
specialised representations of sequences of bytes or characters.

More generally than arrays, we would like a theoretical framework that we can apply for
any abstract type that represents a sequence. Such a framework should set out the proof
obligations for an author of a sequence ADT who wishes to use stream fusion for their
library.

The approach we have taken in System F relies heavily on the properties of final co-
data and does not obviously generalise to abstract types. On the other hand, the data
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abstraction approach we have use for skipping streams in CPOs seems like a natural
approach to take for proving correctness of stream fusion for abstract sequence types.

In our data abstraction approach with streams and lists, we use a skipping stream type
as the concrete type and lists as the abstract type. The intuition is that we should be
able to apply stream fusion whenever skipping streams are a valid data abstraction of a
target type. That is, the skipping stream remains the concrete type and the sequence
ADT is the abstract type.

To develop a theory for stream fusion for ADTs we should re-analyse the proofs from
Section 3.8 and see what list properties we rely on that we might lift out as requirements
for an ADT.

For starters, assume we have some abstract type A with functions stream and unstream.
The A type could be polymorphic in an element type

stream :: Stream x → A x
unstream :: A x → Stream x

Or it could be monomorphic and use some fixed element type

stream :: Stream E → A
unstream :: A→ Stream E

The definitions and proofs below will not depend on this choice.

We will need to redefine the ≈ equivalence relation. Recall that it is a logical relation so
the behaviour at function and other functorial types is prescribed and we only get to
choose the behaviour at base types. At stream type we defined ≈ by

s ≈ s ′ ⇐⇒ unstream s = unstream s ′

We can keep this definition and use the new unstream for our abstract type.

Recall Theorem 3.8.3, the fusion rule for skipping streams

fs ≈ fs =⇒ fs (stream (unstream s)) ≈ fs s

The proof for this theorem was

fs ≈ fs

⇐⇒ { definition of ≈ at function types }
s ≈ s ′ =⇒ fs s ≈ fs s

′

=⇒ { substitute s ′ := s , s := stream (unstream s) }
stream (unstream s) ≈ s =⇒ fs (stream (unstream s)) ≈ fs s

=⇒ { lemma stream (unstream s) ≈ s }
fs (stream (unstream s)) ≈ fs s
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Beyond the updated ≈, the only other property this proof relies on is the lemma
stream (unstream s) ≈ s . The proof for this lemma was

stream (unstream s) ≈ s

⇐⇒ { definition of ≈ at stream type }
unstream (stream (unstream s)) = unstream s

⇐= { follows from lemma with x := unstream s }
unstream (stream x ) = x

The ≈ property still holds so the only property we rely on here is the lemma
unstream (stream x ) = x .

So we can conclude that the stream fusion transformation holds for any ADT for which
unstream (stream x ) = x . Of course the fusion transformation still has the side condition
fs ≈ fs and this will need to be proved afresh for each stream function for each ADT
with its associated definitions of stream and unstream.

3.10.1 Simple array example

We should look at some example beyond lists if only to check that the requirements on
sequence ADTs given above are general and are not only satisfied by lists. Arrays are a
relevant example since most stream fusion implementations to date have been for some
kind of array. We will look at a very simple model of arrays. We are not interested in
every last detail of yet-another induction proof, we will simply sketch out the structure.

We will use the following simple signature of a one-dimensional array indexed by natural
numbers that is polymorphic in its element type.

data Array a

(!) :: Array a → Int → a
len :: Array a → Int
arr :: Builder a → Array a

The len operation gives the length which is the exclusive upper bound on the range of
the array. Arrays are constructed using a builder monoid with the following signature

data Builder a

empty :: Builder a
(�) :: Builder a → Builder a → Builder a

single :: a → Builder a

While these two signatures are simple and nothing requires that they be implemented
as an array – the simplest implementation would be a binary tree – it is nevertheless a
realistic model because it can be implemented as an array with the usual asymptotic
complexity for the array operations. In particular it is possible to implement the Builder
abstraction such that constructing an array takes only linear time and with low constant
factors6.

6For example using a monoid to compose actions on mutable arrays in the ST monad.
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Of course we need to know something about how arrays behave. We will assume a
number of properties that arrays should obviously support. Firstly, we need an equality
principle.

a = a ′ ⇐⇒ len a = len a ′

∧ ∀i . i < len a =⇒ a ! i = a ′ ! i

Next we need to know the behaviour of observations on arrays constructed in the various
possible ways. For empty and single-place arrays we assume

len (arr empty) = 0
len (arr (single e)) = 1

arr (single e) ! 0 = e

For arrays constructed via the builder monoid using the monoid operation we assume

len (arr (b � b ′)) = len (arr b) + len (arr b ′)

arr (b � b ′) ! i = if i < lb then arr b ! i
else arr b ′ ! (i − lb)

where
lb = len (arr b)

Note that we have not specified the strictness of the single function or � operator. We
will return to this point.

We can now define the stream and unstream functions

stream :: Array a → Stream a
stream a = Stream next 0
where
next i | i < len a = Yield (a ! i) (i + 1)

| otherwise = Done

unstream :: Stream a → Array a
unstream (Stream next s) = arr (go s)
where
go s = case next s of

Done → empty
Skip s ′ → go s ′

Yield x s ′ → single x � go s ′

With these definitions and properties in place we can look at how we might prove the
basic stream fusion lemma.
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Lemma 3.10.1. unstream (stream a) = a

Proof. Working on the left hand side gives us a straightforward recursive definition

unstream (stream a)
=
unstream (Stream next 0)
where
next i | i < len a = Yield (a ! i) (i + 1)

| otherwise = Done
=
arr (go 0)
where
go s = case next s of

Done → empty
Skip s ′ → go s ′

Yield x s ′ → single x � go s ′

next i | i < len a = Yield (a ! i) (i + 1)
| otherwise = Done

=
arr (go 0)
where
go i | i < len a = single (a ! i) � go (i + 1)
| otherwise = empty

To prove this is equal to simply a we need to use our array equality principle

a = a ′ ⇐⇒ len a = len a ′

∧ ∀i . i < len a =⇒ a ! i = a ′ ! i

This gives us two parts to prove. For the two parts we can use the properties of
len (arr (b�b ′)) and arr (b�b ′)!i to break down the recursive case single (a !i)�go (i+1).

We can prove len (arr (go 0)) = len a by natural number induction using the hypothesis

i < len a =⇒ len (arr (go (len a − i))) = i

The zero case is a matter of evaluation and applying the array rule len (arr empty) = 0.
For the i + 1 case we calculate

len (arr (go (len a − (i + 1))))

= {guard is true since | len a − (i + 1)< len a |}
len (arr (single (a ! i) � go (len a − (i − 1) + 1)))

= { array rule len (arr (b � b ′)) = len (arr b) + len (arr b ′) }
len (arr (single (a ! i))) + len (arr (go (len a − (i − 1) + 1)))

= { array rule len (arr (single e)) = 1 }
1 + len (arr (go (len a − i)))

= { induction hypothesis len (arr (go (len a − i))) = i }
1 + i



CHAPTER 3. STREAM FUSION IS CORRECT 135

We can do a similar natural number induction for the indexing part. We can prove the
following by induction on i

i 6 j < len a =⇒ arr (go (j − i)) ! i = a ! j

Instantiating this with i := j gives us the result

j < len a =⇒ arr (go 0) ! j = a ! j

The zero case relies on the array rule to decompose arr (b � b ′) ! j

arr (go j ) ! 0
=
arr (single (a ! j ) � go (j + 1)) ! 0

=
if 0< 1
then arr (single (a ! j )) ! 0
else . . .

=
a ! j

The inductive case is similar

arr (go (j − (i + 1))) ! (i + 1)
=
arr (single (a ! (j − i − 1)) � go (j − i)) ! (i + 1)

=
if (i + 1)< 1
then . . .
else arr (go (j − i)) ! i

=
arr (go (j − i)) ! i

=
a ! j

Of course the other part of applying stream fusion to arrays is the need to prove the
abstraction property that relates each stream and equivalent array function. Consider a
very simple example, the head function. On arrays this is simply

heada :: Array a → a
heada a = a ! 0

The stream version is

head s :: Stream a → a
head s (Stream next s) = loop s
where
loop s = case next s of

Done → error "head: empty"

Skip s ′ → loop s ′

Yield x → x
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The abstraction property relating the two is

head s = heada ◦ unstream

In the non-⊥ case we have to show

head s (Stream next s) = heada (unstream (Stream next s))

Unfolding the left hand side gives

heada (unstream (Stream next s))
=
arr (go s) ! 0
where
go s = case next s of

Done → empty
Skip s ′ → go s ′

Yield x s ′ → single x � go s ′

Similarly with the right hand side

head s (Stream next s)
=
loop s
where
loop s = case next s of

Done → error "head: empty"

Skip s ′ → loop s ′

Yield x → x

Of course here we are back to non-well-founded recursion due to the Skip case so we
would have to return to using fixpoint induction. In the Done case we index the empty
array on the left and we have error on the right hand side. The Skip case would use the
induction hypothesis.

The Yield case is the interesting one. On the left hand side we have single x � go s ′ so
we would obviously want to apply the array rule matching arr (b � b ′) ! i so that we
get arr (single x ) ! 0 = x on the left hand side. Whether or not we can apply this rule
however depends on whether our model of arrays says that � is strict or not. If � is
non-strict then we can use the array rule to decompose single x � go s ′ even if go s ′ turns
out to be ⊥. However most types that we would recognise as arrays (as opposed to trees)
will require that � is strict in both arguments. In this case then we must accept that the
theorem is not true because we cannot guarantee the side condition that go s ′ is not ⊥.
Stepping back, what this tells us is that operations on streams are not totally independent
of the choice of concrete data structure we use them with. While we could use head s

as defined above to model the list function head , we cannot use it to model head on
arrays. The key difference is that lists are non-strict in their tails while arrays are
strict. So a stream function that only consumes a prefix of a stream is perfectly valid
to model a list function but most array implementations require the full array spine
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be constructed. Similarly, some arrays are strict in their elements. In our simple array
model this corresponds to single being strict.

It is still possible to correctly model the array functions using stream functions, it just
requires some adaptation of the stream functions. For example a version of last s intended
to model the list function last would work unchanged for arrays that are not strict in
their elements because last s is already strict in the spine of the sequence. On the other
hand it would require modification to accurately model fully-strict arrays; it would have
to force each element, e.g. using seq .

More generally, we can observe that arrays are simply a smaller type than lists or streams.
While we can use streams as a concrete representation for both lists and arrays, every
stream corresponds to some list while the same is not true for arrays – some stream values
represent no array. More formally, the abstraction function unstream for lists is total
while for arrays it is partial. It is not a problem to pick a concrete representation with
unused values but it does mean not all stream functions correspond to array functions,
such as head s above.

3.10.2 Fusing conversions between fusible types

If we have several fusible types, e.g. lists and arrays, than we can convert between them
using the appropriate combinations of stream and unstream, for example

listToArray :: [a ]→ Array a
listToArray = unstreamarray ◦ stream list

arrayToList :: Array a → [a ]
arrayToList = unstream list ◦ streamarray

We can also fuse such conversions. Take for example the term

maparray f ◦ listToArray

which we can unfold to

maps f ◦ streamarray ◦ unstreamarray ◦ stream list

We can apply the stream/unstream rule for the array type leaving us with just

maps f ◦ stream list

There is no problem with the two sequence types having different strictness properties,
as is the case between lists and arrays. Correctness is ensured by the producers and
consumers satisfying the abstraction property for the appropriate data type. As illustrated
at the end of the previous section with the head example, it should not be assumed that
a stream function that satisfies the abstraction property for one type will satisfy it for
another.
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3.11 Testing stream fusion

In the previous sections we concentrated on formal proofs that stream functions and
the corresponding list functions satisfy the abstraction property. While the results are
satisfactory, it is clear that the effort per function is relatively high. In practice, for people
implementing a library using stream fusion, there may be insufficient time available to
develop formal proofs for each function, even with the help of a proof assistant. It is
desirable therefore to have additional lightweight semi-formal methods that provide some
degree of confidence but with considerably reduced effort. This section presents a testing
method which has been employed in a full-scale implementation of a list library using
stream fusion.

The method uses two kinds of property-based testing. Property-based testing is a common
technique in the functional programming community. It was first popularised by Claessen
and Hughes (2000) with the QuickCheck testing framework which takes the approach of
testing executable properties with randomly generated test cases. For example, we wish
to check the abstraction property for the liness/lines functions

∀s . unstream (liness s) = lines (unstream s)

A key idea in property based testing is to convert this mathematical property into
an executable property. We define an executable property by changing mathematical
equality (=) for value equality within the language (≡), and by making the universally
quantified variable a function parameter

prop lines :: Stream Char → Bool
prop lines s = unstream (liness s) ≡ lines (unstream s)

The approach QuickCheck takes is to randomly generate input values and to evaluate
prop lines on each test case. The generation of arbitrary inputs is done in a type-directed
and modular way using type classes. Since testing the prop lines property relies on
generating arbitrary values of type Stream Char we must provide an appropriate type
class instance for the Stream type. With that in place we can test the property

ghci> quickCheck prop_lines

OK, passed 100 tests.

In practice the property-based method works well for finding bugs. Runciman et al. (2008)
proposed another approach to property-based testing, embodied in the the SmallCheck
framework. The key difference is in how test cases are constructed. Instead of using
random values, test cases by generated by enumerating all possible values of the parameter
type, up to some size bound. For example, for integers we simply enumerate them up to
some limit. Structured types can also be enumerated in a regular way.

Both techniques can generate test cases that use function values as inputs. This is
important for properties such as

prop map f :: (Int → Int)→ Stream Int → Bool
prop map f s = unstream (maps f s) ≡ map f (unstream s)
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We have successfully used this method in practice to test an implementation of a list
library using stream fusion (Coutts et al., 2007b, Section 6.3). The library implements
the list functions from the Haskell 98 specification, providing fusible versions where
possible. There is an an executable property for each function, relating it to the definition
given in the Haskell 98 specification7. In a few cases we must add side conditions to
satisfy preconditions such as lists being non-empty. For testing functions such as iterate
and cycle that generate infinite lists, we use an equality approximation that considers
only a finite prefix.

3.11.1 Strictness properties

There is, however, a big blind spot with the testing system as described thus far and that
is strictness properties. The remainder of this section describes a new member of the
family of property-based testing methods and its application to testing stream library
functions.

Strictness is a crucial part of the semantics of functions in a non-strict language. Getting
the strictness wrong has often proved to be the source of subtle bugs in real programs
and yet strictness properties are frequently overlooked, especially in testing. Indeed even
the Haskell 98 report does not specify the strictness properties of the functions in the
List library, except by giving informal sample implementations. As a consequence, and
as we discovered, some of the functions from the Haskell 98 List module arguably have
the wrong strictness properties. We will look at these infelicities once we have introduced
the strictness testing technique.

Strictness is both a semantic issue and an operational issue. Operationally, strictness
affects how much must be evaluated to get an answer and in what order the evaluation
may be done. Semantically, strictness determines the result of functions on partial inputs.

So the way to test strictness properties is to test with partial values. Both QuickCheck
and SmallCheck generate test cases using only total values. Thus we cannot use either
framework directly, but we can use a similar approach.

Consider the first example again

∀s . unstream (liness s) = lines (unstream s)

Previously we tested this property with s ranging over only total streams. We would
now like to test it with s ranging over all partial streams. There is a problem, however,
when it comes to making this property into an executable test. For total values we
were able to change mathematical equality (=) for value equality within the language
(≡). The problem is that with mathematical equality ⊥ = ⊥, while with value equality
⊥ ≡ ⊥ = ⊥. That is, evaluating (≡) where both inputs are ⊥ itself evaluates to ⊥ rather
than to True.

7At the time this list library was developed, the significance of the abstraction property was not
appreciated. The test properties used were weaker versions that cannot determine if skips are handled
incorrectly.
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We use the techniques of Danielsson and Jansson (2004) to define an operator ($) that
is ordinary equality (≡) on total values but with different behaviour on ⊥ values

⊥ $ ⊥ = True
$ ⊥ = False

⊥ $ = False
a $ b = a ≡ b

Defining this operator requires a modicum of ‘cheating’, relying as it does on a function
with the properties

isBottom ⊥ = True
isBottom = False

Such a function cannot be defined within the language: if it existed it would solve
the halting problem. We can approximate isBottom for the subset of ⊥ values that
represent computations that terminate with an error, but not ⊥ values representing
non-termination, that is

isBottom ⊥error = True
isBottom ⊥loop = ⊥loop

isBottom = False

This approximation is sufficient in practice for writing properties because we typically do
not write programs or properties that involve non-termination.

Even this approximation cannot be defined within in the language because it is not
continuous in the CPO sense and it distinguishes different kinds of ⊥ values that are
semantically equal. It can be implemented by going outside of the normal language
semantics and making use of a backdoor in common Haskell implementations. The trick
is described in more detail by Danielsson and Jansson (2004, Section 5). Due to the
non-standard semantics however, we must be careful with how we use isBottom and any
operators defined in terms of it. We should use it only as if we were writing meta-level
properties and not use it in ordinary value-level computations.

Armed with the $ operator we can write the executable property

prop lines s = unstream (liness s) $ lines (unstream s)

An interesting feature of testing with partial values rather than just total values is that
specifying properties of partial functions is simpler. When testing partial functions (e.g.
head) with total values we must only generate values within the domain of the function
(i.e. non-empty lists) so as to avoid the whole test evaluating to ⊥. When testing with
partial inputs we are already prepared to handle ⊥ as a result. We can thus simplify the
test properties for partial functions by discarding preconditions on the test data. Indeed
we must remove any preconditions implemented by filtering test data as they themselves
would immediately evaluate to ⊥ and we would not evaluate the function under test.
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3.11.2 Generating partial values

Now that we can write executable properties over partial values, the next step is to
generate test cases. We have seen the approaches taken for QuickCheck and SmallCheck.
One observation is that almost all the interesting variations in partial structures are
exhibited in ‘small’ values. We want to be sure that we test all these small partial values.
It is thus natural to adopt the SmallCheck model of generating all values up to some
size limit. Another reason is that since functions cannot observe ⊥ and list functions
usually work in a regular fashion over the structure of lists, we do not need very complex
partial values to cover all control flow paths. That said, there are some functions where
we need enough variation in the total parts of the value to get sufficient coverage. For
example, to test the rather subtle strictness properties of the lines function we need to
test with strings that contain newline characters.

The way SmallCheck ’s generators work is to produce a series of all values in order of size,
up to some given bound. We can adapt SmallCheck to generate all partial values, in an
order consistent with the domain theoretic ordering. For example for lists of integers we
get

⊥, [ ], ⊥ :⊥, 0 :⊥, ⊥ : [ ], 0 : [ ], . . .

This adaptation is relatively straightforward. For example, SmallCheck defines the series
operators (9) and (on)

type Series a = Int → [a ]

(9) :: Series a → Series a → Series a
(on) :: Series a → Series b → Series (a, b)

These operators are used to help build Series of values for regular algebraic data types.
For example they are used in the Serial instances for pairs and lists

instance (Serial a, Serial b)⇒ Serial (a, b) where
series = series on series

instance Serial a ⇒ Serial [a ] where
series = cons0 [ ] 9 cons2 (:)

The original definitions of (9) and (on) for total values are

(9) :: Series a → Series a → Series a
s1 9 s2 = λd → s1 d ++ s2 d

(on) :: Series a → Series b → Series (a, b)
s1 on s2 = λd → [(x , y) | x ← s1 d , y ← s2 d ]

To modify these to generate Series of partial values, we merely need to add an extra ⊥
at the beginning of the series and to shuffle the rest of the series down by one

(s1 9 s2 ) 0 = ⊥ : [ ]
(s1 9 s2 ) d = ⊥ : s1 (d − 1) ++ s2 (d − 1)

(s1 on s2 ) 0 = ⊥ : [ ]
(s1 on s2 ) d = ⊥ : [(x , y) | x ← s1 (d − 1), y ← s2 (d − 1)]
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With these modified definitions the Serial instances for pairs and lists work unaltered.
The instances for primitive types like Int do have to be changed.

Another difference compared to SmallCheck is that the pretty printer displays ⊥ values
as text rather than failing with an exception. This enables the display of failing test
cases. Again, this trick is described by Danielsson and Jansson (2004).

It is not directly possible to generate values with polymorphic types. When testing
properties using polymorphic functions such as map we must write properties that
instantiate them monomorphically.

prop map :: (A→ B)→ Stream A→ Bool
prop map f s = map f (unstream s) $ unstream (maps f s)

The types A and B stand in for polymorphic type variables but are in fact monomorphic
representative types. For testing at total values we would typically pick A and B to be a
type with many possible values like Int . For strictness testing however we need only ⊥
and non-⊥ values8. We therefore define

newtype A = A () deriving (Eq , Show , Serial)
newtype B = B () deriving (Eq , Show , Serial)

This means A and B have series consisting of just ⊥ and ().

3.11.3 Evaluation

To evaluate the utility of the testing method we compared the Haskell 98 list specification
with the implementation shared by the major Haskell implementations. We wrote
properties to equate corresponding functions. To our surprise, the tests uncovered several
differences between the Haskell 98 specification and the common base implementation9

of the List module. In three cases the common implementation is stricter. In each case
however the differences can be attributed to mistakes in the Haskell 98 specification or
to legitimate disagreement.

Two differences are for splitAt and partition which the Haskell 98 report specifies by

splitAt :: Int → [a ]→ ([a ], [a ])
splitAt n xs = (take n xs , drop n xs)

partition :: (a → Bool)→ [a ]→ ([a ], [a ])
partition p xs = (filter p xs , filter (not ◦ p) xs)

The implementations in the List module from the common base package differ in at
least these cases

splitAth98 ⊥ xs = (⊥,⊥)
splitAth98 0 ⊥ = ([ ], ⊥)
splitAth98 n ⊥ = (⊥,⊥)
splitAtbase ⊥ xs = ⊥
splitAtbase n ⊥ = ⊥

8Ironically this depends on a parametricity argument.
9Three Haskell implementations, GHC, NHC98 and Hugs98, share the same base package which

contains an implementation of much of the Haskell standard library.
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partitionh98 p ⊥ = (⊥,⊥)
partitionbase p ⊥ = ⊥

The general style of the Haskell 98 List functions is to be as lazy as possible, except
where there are good reasons for being stricter. The reason to make splitAt and partition
stricter than the above definitions is to allow more efficient implementations that share
intermediate results. For example in partition we could call the predicate p only once
for each element in the input list. Indeed implementations using sharing were given
in the Haskell 1.4 library report. These two functions got ‘simplified’ in the transition
to the Haskell 98 report and in the process their strictness properties were changed.
For these reasons it seems clear that the specification is wrong and that the common
implementation is correct.

The other case is genericTake. The common implementation uses a different order of
pattern matching compared to the version given in the specification. The version from
the specification is lazy in the numeric argument when the list is empty. On the other
hand, the common implementation is always strict in the numeric argument. There is a
good argument for preferring the common implementation rather than the specification:
with the version of genericTake from the Haskell 98 specification it is not the case that
take = genericTake where as with the common implementation we do have that property.

Based on this experiment, of comparing the common list module implementation with the
Haskell 98 specification, we may reasonably conclude that the strictness property testing
method is useful. It lets programmers reuse their experience with other property-based
testing methods and can uncover subtle strictness mistakes that appear to be hard
to find by other means. To our knowledge, the infelicities between the Haskell 98 list
specification and the common implementation were not previously well known.

During the development of the the stream fusion version of the list library, several mistakes
were found using strictness property tests. It is worth noting that these mistakes were
not caught by the corresponding tests on total values – the mistakes were in the strictness
of the functions.

For example the standard lines function is less strict than one might initially imagine.
Our initial implementation using streams had the property that it would yield a line
only once it encountered the end of the line. However the standard lines function is less
strict; for example

lines (’a’ : ’b’ : ’c’ :⊥) = (’a’ : ’b’ : ’c’ :⊥) :⊥

That is, it returns a list where the first element is a list containing the initial input. It
does not appear to be possible to implement this semantics using a stream version; at
least not without using additional intermediate data structures.

In addition to detecting mistakes in the stream implementation of the library, the
strictness testing highlighted two cases where our stream implementation is actually less
strict than the specification. This is somewhat surprising since the Haskell 98 specification
usually picks the least strict version.
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The functions in question are given in the report as

intersperseh98 :: a → [a ]→ [a ]
intersperseh98 sep [ ] = [ ]
intersperseh98 sep [x ] = [x ]
intersperseh98 sep (x : xs) = x : sep : intersperseh98 sep xs

unwordsh98 :: [String ]→ String
unwordsh98 [ ] = ""

unwordsh98 ws = foldr1 (λw s → w ++ ’ ’ : s) ws

These are straightforward and reasonable definitions. It is not immediately obvious how
one could modify them to be less strict. An observation which may explain why the
stream versions ended up less strict is that the stream versions are naturally rather low
level. Instead of pattern matching more than one step ahead, as we can do with lists,
stream versions must be completely explicit about demanding input and yielding output.
It is perhaps not so surprising therefore that such an approach would tend to produce
the least strict implementation, compared to a high level approach aimed at simplicity
and elegance.

For easier comparison we can translate the stream versions back into functions directly
on lists10

intersperse ′ :: a → [a ]→ [a ]
intersperse ′ [ ] = [ ]
intersperse ′ sep (x0 : xs0 ) = x0 : go xs0
where
go [ ] = [ ]
go (x : xs) = sep : x : go xs

unwords ′ :: [String ]→ String
unwords ′ [ ] = [ ]
unwords ′ (cs0 : css0 ) = go cs0 css0
where
go [ ] css = to css
go (c : cs) css = c : go cs css

to [ ] = [ ]
to (cs : ccs) = ’ ’ : go cs ccs

Their low level nature is apparent. These definitions differ from the versions in the
Haskell 98 specification in the cases

intersperseh98 (x :⊥) = ⊥
intersperse ′ (x :⊥) = x :⊥
unwordsh98 (cs :⊥) = ⊥
unwords ′ (cs :⊥) = cs ++⊥

To verify that our implementation is merely less strict and not simply wrong, we need a
different comparison than $. We use an operator ⊑̊ that is an executable approximation

10It has recently been proposed that the common implementation of intersperse be changed to be less
strict by using this definition. See http://hackage.haskell.org/trac/ghc/ticket/4282

http://hackage.haskell.org/trac/ghc/ticket/4282
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of the domain-theoretic partial ordering ⊑. This and related operators are described by
Danielsson and Jansson (2004). With the ⊑̊ operator we are able to write properties
to confirm that our implementations of unwords and intersperse do indeed refine the
Haskell 98 specification.



Chapter 4

Stream fusion is an optimisation

In this chapter we look at the details of the transformations involved in stream fusion
and in what circumstances we can be sure that it leads to an optimisation.

4.1 Introduction

The general context, as set out in Chapter 1, is that we are working with pure functional
programs that manipulate sequences and we will perform transformations on the programs
with the aim of optimising them. Though we use Haskell (see Section 2.4), everything
presented in this chapter should be transferable to any other pure functional programming
language.

Some of our design choices, particularly the choice to use general purpose optimisations,
are motivated by the desire to implement stream fusion in the context of a general
purpose optimising compiler. Similarly, although it is not essential that stream fusion
be applied at compile time, we want to be able to use stream fusion in the optimisation
phase of a traditional static compiler. Thus it is important that it be possible to apply
stream fusion at compile time, before any program inputs are available.

4.1.1 Justifying optimisation claims

As stated in the first chapter, there are two main criteria by which we should evaluate
fusion systems: they should be correct and they should be an optimisation. When
we claim that a transformation is correct, it is fairly clear what constitutes a valid
justification. There is more room for interpretation however when it comes to what
constitutes a valid justification for an optimisation claim.

In a previous paper (Coutts et al., 2007b) we gave an empirical justification that stream
fusion could be an optimisation. We demonstrated that running times and memory
allocations were improved for some benchmark programs1. There is some value in this
kind of empirical result. It demonstrates that there are no overlooked details that would

1It was actually a comparison to foldr/build rather than to a baseline of no fusion.
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always prevent the optimisation in practice. For example, had such an experiment
been performed for unbuild/unfoldr fusion then the discovery that it cannot optimise
compositions with filter would have come much sooner.

On the other hand, such empirical evidence is not universally applicable and it does not
provide any guarantees. It is tied to a specific implementation – GHC in the case of
our own previous publications. It can be hard to tell precisely what transformations are
being performed by the compiler to achieve the observed results. For negative results
where benchmarks are made worse, it can be hard to distinguish between fundamental
problems and problems due to the quality of implementation. Perhaps most importantly,
it is not immediately clear which transformations it would be sufficient to implement in
another compiler to be able to use the fusion system effectively.

As a complement to our earlier empirical work, in this chapter we will argue that the stream
fusion system is an optimisation, and do so independently of any particular compiler.
More precisely we will argue that there exists a sequence of semantic-preserving, syntactic,
local transformations that leads to an improvement. We will only give heuristics for what
transformations should be applied at which stage; we do not provide any algorithm to
guarantee that the sequence of local transformations will always be found.

The choice of program representation and transformation is based on the goal of allowing
implementations in a general purpose compiler. In particular by taking the approach of
using a syntactic representation of programs and using a sequence of local transformations
we match the traditional approach of optimising compilers. In a more special-purpose
implementation, a hardware compiler perhaps, it may make sense to use a special
representation of stream functions2 and to implement the optimisation and compilation
in a direct way.

As is common practice we will use heap allocations as a cost measure since this is much
easier to reason about than time measurements. In practice allocations are a reasonable
proxy for time. We will not use a full formal cost model; rather we will note the change in
allocations for each local transformation. We will declare a sequence of transformations
to be an improvement if it decreases the number of allocations.

As a caveat, it should be noted that we will account only for allocations of data construc-
tors, not of closures. In the foldr/build system, for example, it is important to account
for closures since the implementation of foldl in terms of foldr introduces the allocation
of additional closures3. There does not appear to be a similar issue for stream fusion.

4.1.2 Terminology

We should be precise about what we mean by the terms ‘fusion’, ‘fusion system’ and
‘optimisation’.

2The state machine form described in Section 4.4 is a plausible choice for a special purpose represen-
tation.

3Gill (1996, Section 4.4) describes the analysis and transformation required to eliminate these
additional closure allocations.
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• By fusion we mean any kind of transformation that is intended to be an optimisation,
though we typically use the term only for transformations that combine objects.

• A fusion system is more than just the application of a fusion transformation; a
fusion system is all the transformations needed to eliminate the intermediate data
structures.

• An optimisation is an improvement in some cost measure, usually time or allocations.

In particular, we use the term fusion to cover more than just the application of a fusion
rule. For example, in this chapter we will describe fusion between stream producers and
stream consumers which is rather more complicated than the simple application of a
rewrite rule.

4.1.3 Good producers and good consumers

Recall from Section 1.3.8 that with the unbuild/unfoldr system, the filter example does
not result in a reduced number of allocations. This was despite the fusion rule being
applied successfully. The problem was that a subsequent and essential transformation
could not be applied. The lesson is that the successful application of a fusion rule must
not be confused with a fusion system giving an overall optimisation – even when the
fusion rule is locally an optimisation. We must analyse the fusion system as a whole to
be sure that it is an overall optimisation.

With stream fusion it was the addition of skips that enabled the definition of filter to
be changed, which in turn lead to an improvement. Note that the switch to stream
fusion only made the better definition possible, the change was not automatic. It is
straightforward to translate the original poorly performing definition of filter into a
poorly performing stream definition; simply make the stepper function recurse rather
than use Skip:

nextfilter p next s = case next s of
Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → if p x then Yield x s ′

else nextfilter p next s ′

The question therefore is whether there are any rules we can follow when writing stream
functions that will ensure we end up with an optimisation.

Following the terminology of Gill (1996, Sections 3.5.2–3.5.4) we talk about good producers
and good consumers. The purpose of this nomenclature is to provide a simple way to
explain to programmers when to expect fusion to take place, without programmers having
to know the details of the transformation. We can explain that particular list-producing
functions are good producers and that particular list-consuming functions are good
consumers in a particular argument (or arguments). We then promise programmers
that the fusion optimisation occurs when a list produced by a good producer is directly
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consumed by a good consumer. This terminology and explanation can be used for lists,
arrays and other sequence types using stream fusion.

This promise is relatively simple to explain and simple for programmers to remember and
to apply. It is not quite so easy to substantiate. Our task is to define good producers
and consumers, and to show how these definitions lead to an overall optimisation. As
mentioned previously, we do not provide an algorithm to find a suitable sequence of
transformations. While that task is necessary to be able to provide the simple promise,
we must leave it to those implementing the fusion system in a particular compiler.

4.1.4 Overview

The argument that stream fusion for some sequence type is an overall optimisation has
the following structure:

• we describe a sequence of transformations;

• we define sufficient conditions on good producers and consumers to ensure that we
can perform the transformations;

• we account for the change in allocations over the whole sequence of transformations.

In the case of stream fusion for lists, the overall accounting argument is that for each
good producer/consumer pair, stream fusion saves exactly one allocation per list element.

The transformations in the stream fusion system can be broken down into two major
phases:

• the first involves applying the stream/unstream fusion rule to bring stream producers
and stream consumers together;

• the second involves optimising compositions of stream producers and stream con-
sumers to eliminate intermediate data constructors.

The first phase is relatively straightforward while the second is rather more involved.

The argument for stream fusion being an overall optimisation can be broken down into
arguments for each phase which can be tackled separately. The structure of the argument
in each phase follows the outline above.

The remainder of this chapter is organised as follows:

• We cover the first phase in Section 4.2. We have to account for the difference
between simple functions and their fusible equivalents. We have to place conditions
on good consumers and producers to ensure that it is always possible to unfold
them to the point where we can apply the stream/unstream fusion rule.

• In Section 4.3 we outline the transformations and arguments for the second phase.
In particular we identify stream transformers as an important class of stream
functions in addition to stream producers and stream consumers.
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• In Section 4.4 we describe a correspondence between stream producers and a kind
of state machine. The state machine view helps to provide an intuition about
the dynamic behaviour of streams. It also gives some intuition for how – and
under what conditions – stream consumers, transformers and producers can be
successfully fused.

• In Section 4.5 we give the transformation and arguments covering the fusion of
stream transformers with stream producers. In particular we set out the constraints
on stream producers.

• In Section 4.6 we give the transformation and arguments covering the fusion of
stream consumers with stream producers. We set out the constraints on stream
consumers.

• In Section 4.7 we account for the change in allocations for the stream fusion system
as a whole.

• In Section 4.8 we look at the issue of expressiveness. Since we have to place
constraints on good producers and good consumers to ensure that we can fuse them
effectively, then we must consider the extent to which this restricts the range of
fusible functions we can express.

4.1.5 Sufficient compiler optimisations

Sections 4.2, 4.5 and 4.6 give a detailed account of the sequence of transformations that
make up stream fusion. While implementations do not have to follow this description it
does serve as a checklist of compiler optimisations that are sufficient to support stream
fusion.

We summarise that checklist here:

• Fusion rewrite rule

The fusion law itself is a simple syntactic transformation. This could be implemented
directly in the compiler, or via a general purpose rewrite rule system (e.g. Peyton
Jones et al., 2001).

• Inlining and beta-reduction

These are very basic local transformations. Santos (1995, Section 3.1 and 3.2) and
Peyton Jones and Santos (1998, Section 4) give an account.

• Let floating

This is used to get let-bindings “out of the way” to enable other transformations
involving case expressions. Santos (1995, Section 3.4) and Peyton Jones and Santos
(1998, Section 7) give a description.
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• Case-of-known-constructor and case-of-case transformations

These are key transformations that eliminate constructor allocations. Santos (1995,
Sections 3.3 and 3.4) and Peyton Jones and Santos (1998, Section 5) describe these
transformations. We also give a presentation in Sections 4.5.2 and 4.5.7.

• Call pattern specialisation

This is a somewhat more sophisticated transformation introduced by (Peyton Jones,
2007). We also give a presentation in Section 4.6.2.

4.1.6 Lists and other sequence types

In this chapter we make the optimisation argument for stream fusion as applied to the
standard list data type. As noted in the previous chapter, stream fusion can be applied
to sequences types other than lists. Much of what we cover in this chapter is easily
transferable to other sequence types such as arrays. In particular the transformation
process and the argument that the transformations are possible is essentially independent
of the sequence type. The details of the allocation accounting argument are however
specific to each sequence type, though the general strategy should be transferable.

Throughout this chapter we will assume the following definition for the Stream data
type.

data Stream a = ∃s . Stream (s → Step a s) s

data Step a s = Done
| Skip s
| Yield a s

For lists, the definition of stream and unstream are as follows.

stream :: [a ]→ Stream a
stream xs = Stream uncons xs
where
uncons [ ] = Done
uncons (x : xs) = Yield x xs

unstream :: Stream a → [a ]
unstream (Stream next s) = unfold next s
where
unfold next s = case next s of

Done → [ ]
Skip s ′ → unfold next s ′

Yield x s ′ → x : unfold next s ′

As it turns out, the details of the stream and unstream definitions are not especially
important. We are able to treat them as ordinary stream producers and stream consumers.
What matters is that they satisfy the conditions for stream producers and stream
consumers that we set out in Sections 4.5.4 and 4.6.3 respectively. This gains us some
independence from the sequence type: if we were to make an optimisation argument for
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a different sequence type then we would need to show that the stream and unstream
definitions for that type satisfy the stream producer and consumer constraints.

4.1.7 Correctness requirements

We will of course have to start with the correctness requirements from the previous
chapter. In particular, recall from Section 3.8.2 that to be able to use the simple rewrite
rule stream (unstream s) = s , we need a context in which all functions that can observe
streams have the property that they preserve equivalence on streams (fs ≈ fs).

We follow the suggestion from Section 3.8.2 and take the approach of using a library.
The library exports functions that operate on lists but internally are implemented in
terms of streams. For example, instead of the ordinary definition of map on lists, our
library defines map on lists in terms of maps on streams:

map f = unstream ◦maps f ◦ stream

We require that all the functions in the library preserve equivalence on streams and that
the Stream type is not exported from the library. Not exporting the Stream type means
we cannot export any functions with types that mention Stream.

4.2 Applying stream/unstream fusion

Our starting situation is a list produced by a good producer that is immediately consumed
by a good consumer.

consume (produce . . .)

In this phase we can treat all such instances in a program independently, even for a
function that is a good consumer in multiple arguments. In the next phase we will have
to consider larger units.

The aim in this phase is to statically transform the above into the form

consumes (stream (unstream (produces . . .)))

at which point we will be able to apply stream/unstream fusion. A good producer must
use unstream to construct its result and likewise a function that is a good consumer in
a particular argument must use stream to consume that argument. This is not quite
a sufficient condition however. The need to perform the transformation statically is
significant. We must be able to perform the transformation without having to evaluate
values only available at runtime. Consider for example the following producer

consume (if even n then unstream (. . .)
else unstream (. . .))

It constructs a list using unstream but in two different ways depending on a runtime
test. While in this simple example we could push the consumer inside each branch of the
dynamic test, it is easy to construct more complex examples, e.g. using fixpoints, where
we can no longer do a static transformation.
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4.2.1 Good producer conditions

In deciding what conditions to require of good producers and good consumers we must
be guided by the needs of the transformations we wish to perform. Our aim is to define
relatively simple conditions, not to find the most general conditions or the most general
form of transformation.

In this phase, we want to end up with an applicative form of stream consumers and
stream producers, ready for the second phase. This will require that we bring stream and
unstream combinators together and apply the stream/unstream fusion rule. In addition
it will require that what we are left with after applying the fusion rule is an applicative
form of stream consumers and producers. A straightforward approach is to constrain
the syntactic form of good consumers and good producers so that they can easily be
unfolded into the form we need.

We stipulate that good producers be terms with the following form. At the top level we
allow any mixture of lambda abstraction and let binding. The first body term must be
either unstream applied to a stream producer term or it may be another good producer.

That is, syntactically, good producers will look like

f x = unstream ⟨produces⟩
where . . .

or similarly

f x = h (. . .)
where . . .

Where h is some existing good producer. The first form is used for direct definitions in
terms of stream functions such as

unfoldr f s = unstream (unfoldr s f s)

while the second form allows derived definitions such as

iterate f = unfoldr (λx → Just (x , f x ))

We will obviously also require that where good producers are defined in terms of other
good producers that these definitions are not cyclic. We also require there to be a
finite number of good producers in any particular program and that their definitions be
available (which rules out dynamic code loading).

We will require that the stream producer term satisfies certain constraints, the details of
which we defer to Section 4.5.4.

4.2.2 Good consumer conditions

We have a similar set of conditions for good consumers.
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A function that is a good consumer in some argument must consume that argument
exactly once and do so directly with stream and a stream consumer term or with another
good consumer. Thus, syntactically, good consumers will look like

g x = ⟨consumes⟩ (stream x )

or similarly

g x = . . . (h x ) . . .

where h is some existing good consumer. These two forms allow definitions such as

foldl f a xs = foldl s f a (stream xs)

sum xs = foldl (+) 0 xs

As with the producers, we require that the collection of good consumers is finite, acyclic
and that all definitions are available. We will require that the stream consumer term
⟨consumes⟩ satisfies a set of constraints which we will set out in Section 4.6.3.

It is important for our allocation accounting argument that good consumers consume their
argument at most once. A consumer that has multiple occurrences where an argument is
consumed would break our accounting argument due to the possibility of duplication.
With a list argument it is possible to share the input list data structure at runtime and
make multiple passes over it. However to apply the stream/unstream rule would require
that we duplicate the producer into each occurrence where the argument is consumed.
Duplicating the producer may also duplicate its runtime allocations which would be a
problem for our allocation argument4.

4.2.3 Bringing stream and unstream together

Taken together, the forms of good consumers and good producers ensure that through a
sequence of transformations we can bring the stream and unstream combinators together.

Let us take a hypothetical example. Because we require the consumer to be applied
directly to the producer then the producer function is necessarily fully applied.

consumer (producer x y) z

We can unfold definitions to expose the stream and unstream combinators. If the
consumer or producer are defined in terms of other good producers or consumers then
we will need to unfold these. In general this will give us a number of nested lambda
abstractions and let bindings.

. . . (stream ((λx y → let . . .
in unstream (. . .)

) x y)) . . .

4In some special cases it may be profitable to duplicate a simple producer that does little allocation,
such as enumFromTo, to enable additional fusion.
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We now need to push the stream inwards. We can push the application of stream through
let bindings. Since we know the producer is fully applied, we can β-reduce to eliminate
each lambda abstraction. To preserve sharing this may introduce additional let bindings.

. . . (let . . .
in stream (unstream (. . .))) . . .

At this point we have a direct application of stream to unstream applied to some
expression. We can now apply the stream/unstream fusion rule.

As explained in Section 3.8.2, we are able to use the simple version of the the stream/
unstream fusion rule because by construction of the library, we have a context where all
functions that manipulate streams are part of the library and those functions follow the
rules.

Having applied the stream/unstream fusion rule, we are left with the application of a
stream consumer term to a stream producer term. More generally, if we start with an
applicative term of good consumers and good producers then we will end up with a
compound applicative term of stream consumers and producers.

Note that there are no ‘naked’ stream inputs or results, that is, stream values only exist
as intermediate types in the applicative term of stream consumers and producers. To
see that this is the case, recall that the exported library functions do not have stream
inputs or results, and thus all combinations have the same property. The property is
also preserved by the fusion rule.

4.2.4 Streams embedded in higher-order or compound types

The definition of good producers and good consumers that we have given so far exclude
the case of streams embedded in higher-order or compound types. Notably concatMap
is not a good consumer in its first argument under our definition of good consumer.
Similarly, functions like unzip and partition that produce pairs of lists cannot be good
producers under our definition of good producer.

It is no coincidence that our definition of good consumers excludes concatMap. While
the first phase of applying stream/unstream fusion with concatMap is straightforward,
the second phase of optimising the resulting stream function is problematic. There are
certainly cases where the intermediate allocations can be eliminated, however no general
method is currently known. We return to this issue in Section 4.8.3.

In the simple case of functions that produce or consume pairs of lists it may be possible
to transform the definitions such that they do satisfy the good producer/consumer
conditions. In the case of consumers, simple currying would usually suffice. An example
that could not be so easily transformed would be a function that performs some dynamic
computation on the pair before extracting the stream components. Similarly, a function
producing a pair of lists, where each list is produced by stream, might possibly be
transformed into a pair of good producers.

Consider the function partition which produces a pair of lists

partition :: (a → Bool)→ [a ]→ ([a ], [a ])
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Denotationally, this function is equal to

partition p xs = (filter p xs , filter (not ◦ p) xs)

However the standard definition is

partition p xs = foldr select ([ ], [ ]) xs
where
select x tfs = let (ts , fs) = tfs

in if p x then (x : ts , fs)
else ( ts , x : fs)

This definition relies on lazy evaluation and sharing so that it only has to use the predicate
p once per element of the input list. While the first definition can be converted into a
pair of good producers, the second definition cannot and therefore cannot be made into
a good producer.

4.3 Optimising stream functions

The next few sections (4.3–4.6) are concerned with how we consume streams. The
challenge is to optimise the consumption of streams. Specifically, the goal is to eliminate
all of the step constructors (Yield , Skip and Done), and all of the constructors used to
represent the stream state.

A useful analogy is to see a stream as a static description of a sequence, as a little program.
We can straightforwardly interpret this description, incurring the costs of representing the
program steps and dynamic program states. Alternatively we can compile the description
and not pay any interpretation overhead. Of course we consume a stream so as to produce
some other result, so when compiling a stream we intertwine it with the code of the
consumer.

Later in this section we will make the ‘little program’ analogy semi-formal by defining
a restricted form of streams that are equivalent to a kind of state machine. We will
incorporate these conditions into the requirements on good producers. We will use
this state machine form to help make the argument that we can always optimise the
consumption of streams so that the various constructors are eliminated.

Example

Let us start by illustrating the kind of transformations we are concerned with in this
section. Consider this simple example of a good consumer applied to a good producer

sum [0 . . 9]

The first phase (Section 4.2) transforms this so that we have a stream consumer applied
directly to a stream producer.

sums (enumFromTos 0 9)
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The definition of sums is

sums (Stream next s) = go 0 s
where
go a s = case next s of

Done → a
Skip s ′ → go a s ′

Yield x s ′ → go (a + x ) s ′

while enumFromTos is defined as

enumFromTos n m = Stream next n
where
next n | n 6 m = Yield n (n + 1)

| otherwise = Done

A straightforward evaluation of sums (enumFromTos 0 9) will allocate a Yield constructor
and a constructor for the Int stream state for each iteration of the stream. An optimised
version of this composition looks like

sums (enumFromTos 0 9)
=
go 0 0
where
go a n | n 6 9 = go (a + n) (n + 1)

| otherwise = a

Here we have fused the stream description into a single recursive function that intertwines
the code of the producer and consumer. The Yield constructors have been eliminated.
What was the stream state is now passed directly as a parameter of the recursive function.
We call this stream consumer/producer fusion.

4.3.1 Scope of the problem

Before looking at the details of how we perform transformations such as the one above,
we should consider what is the most general case that we must deal with. In the first
phase we were able to consider each application of a good consumer to a good producer
independently. In this phase we must consider a slightly larger unit at a time, consisting
of stream producers, transformers and consumers.

We distinguish stream transformers as a special class. A stream transformer is not merely
the conjunction of being a stream producer and a stream consumer. Stream transformers
are special in that they construct a new stream directly in terms of existing streams,
rather than consuming the input streams. More precisely, a stream transformer defines
the new stepper function in terms of the old stepper functions and the new initial state
in terms of the old initial states.
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To illustrate the difference, consider these two functions

plus1 s :: Stream Int → Stream Int
plus1 s = maps (+1)

sort s :: Stream Int → Stream Int
sort s = unHeaps ◦mkHeaps

where
mkHeaps :: Stream Int → Heap Int
unHeaps :: Heap Int → Stream Int

While sort s is obviously a stream consumer and a stream producer, we do not classify it
as a stream transformer. It consumes an input stream to produce an intermediate heap
data structure and then constructs a stream producer which yields the elements of the
intermediate heap. On the other hand, maps directly constructs a new stream – initial
state and stepper function – out of an existing stream’s initial state and stepper function.
It has no recursion to dynamically consume its input stream.

The reason stream transformers are important is that because they let the user build
bigger and more complex streams, they make the task of optimising the consumption of
streams more difficult. Instead of being able to consider each stream consumer/producer
application in isolation, we must consider the consumption of streams that are be built
up through a combination of transformers and producers.

In the general case, the first phase transforms applicative terms consisting of good
consumers and producers into applicative terms consisting of stream producers, trans-
formers and consumers. Typically this gives a term that produces and consumes a single
compound stream. For example this term that manipulates lists

sum (zipWith (×) [0 . . 9] [10 . . 19])

gets transformed into an equivalent term that manipulates streams

sums (zipWiths (×) (enumFromTos 0 9) (enumFromTos 10 19))

Note that since zipWiths is a stream transformer, we have a single stream term

zipWiths (×) (enumFromTo 0 9) (enumFromTo 10 19)

We must consider this stream term as one unit when explaining how to optimise its
consumption by sums .

On the other hand, some combinations of good consumers and producers give rise to
multiple stream terms that are best considered independently. Consider this term that
uses lists

take 10 (sort (take 100 xs))

If we have list sort defined as

sort = unstream ◦ unHeaps ◦mkHeaps ◦ stream
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Initial stage: Middle stage: Final stage:

initial term transformers fused
with producers

consumer fused
with producer

(a) (b) (c)

sums

zipWiths (×)

enumFromTos . . . enumFromTos . . .

sums

(fused)
zipWiths . . .

(fused)
sums . . .

Figure 4.1: Optimisation stages

then the above term gets transformed into

unstream (takes 10 (unHeaps (mkHeaps (takes 100 (stream xs)))))

Because unHeaps and mkHeaps are not stream transformers, we have two independent
stream-producing terms. There is takes 100 (stream xs) which gets consumed by
mkHeaps . There is also takes 10 (unHeaps (. . .)) which gets consumed by unstream.

So the general form that we must deal with is an applicative term consisting of a stream
consumer applied to a tree of stream transformers, with stream producers at the leaves.
As mentioned previously in Section 4.2.3, the way we defined good consumers and
producers guarantees that there are no ‘naked’ streams as inputs or as the result; there
is always a stream consumer at the top and stream producers at the bottom, even if it is
merely unstream or stream.

4.3.2 Overview of the transformations

Consider again the example term

sums (zipWiths (×) (enumFromTos 0 9) (enumFromTos 10 19))

and its depiction as an expression tree in frame (a) in Figure 4.1. As stated before, the
general form is a tree-shaped term of stream consumers, transformers and producers.
Within such terms, each application of a consumer or transformer is a point where we
must eliminate intermediate Step constructors. The top level application of a stream
consumer has the additional challenge of eliminating the constructors used for the stream
state. Our overall optimisation argument relies on eliminating all these constructors.

Our approach to optimising such terms is first to fuse the stream producers and trans-
formers into a single (potentially rather complicated) stream producer (frame (b) of
Figure 4.1). The second and final step is to fuse the top level stream consumer with
the remaining stream producer (frame (c) of Figure 4.1). These two steps achieve sim-
ilar results in terms of eliminating allocations; we distinguish them because the code
transformations involved are different.
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Note that an alternative approach would be to fuse the stream consumers with the stream
transformers to give a more complicated stream consumer, before fusing this consumer
with the remaining stream producers. Will not consider this alternative approach any
further as our approach appears to be easier to explain.

With our example term, the first step of fusing zipWiths with the two producers gives us
the following single stream producer.

zipWiths (×) (enumFromTos 0 9) (enumFromTos 10 19)
=
Stream next (0, 10,Nothing)
where
next (n,m,Nothing) | n 6 9 = Skip (n + 1,m, Just n)

| otherwise = Done

next (n ′,m, Just n) | m 6 19 = Yield (n ×m) (n ′,m + 1,Nothing)
| otherwise = Done

We will cover the details of this transformation step, which we call stream trans-
former/producer fusion, in Section 4.5. Note that we have eliminated the intermediate
Step constructors between zipWiths and the two enumFromTos stream producers. We
are left with a single stream producer. It is not uncommon for these single stream
producers to have quite complicated stepper functions and complicated stream states
with several modes.

The last step is to fuse the above stream producer with the top level stream consumer
sums

sums (Stream next (0, 10,Nothing))
where
next . . .

=
go Nothing 0 0 10
where
go Nothing a n m | n 6 9 = go Just a (n + 1) m n

| otherwise = a

go Just a n ′ m n | m 6 19 = go Nothing (a + n ×m) n ′ (m + 1)
| otherwise = a

This transformation step eliminates both the step constructors and also the stream
state constructors, which in this example, were ( , ,Nothing) and ( , , Just ). As
mentioned previously, we call this transformation stream consumer/producer fusion. We
will cover the details of stream consumer/producer fusion in Section 4.6.

The stream transformer/producer fusion step relies at its core on the case-of-case trans-
formation. The stream consumer/producer fusion step relies both on the case-of-case
transformation and on a transformation known as call pattern specialisation (Peyton
Jones, 2007).
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While it is reasonably clear in the example above that we can concoct and apply suitable
transformations to eliminate the allocations, for the general case we need to explain
exactly what transformations should be applied and give an argument for why we can
always apply these transformations.

4.3.3 Overview of the argument

The approach we take is to impose constraints on the way we write functions that
produce or consume streams. We will argue that these constraints ensure that the various
transformations are applicable. We will also argue that the sequence of transformations
reduces allocations (Section 4.7).

The argument that our transformations are applicable is as follows:

• We require that all the stream producers and stream transformers satisfy the stream
producer constraints (Section 4.5.4).

• We argue that the application of a stream transformer to a stream producer, where
both satisfy the stream producer constraints, can be fused to give a single stream
producer that also satisfies the stream producer constraints (Section 4.5.5).

• Since the producer constraints are preserved by fusing transformers with producers
then by induction we can fuse all the transformers and producers into a single
stream that satisfies the producer constraints.

• We require that all the stream consumers satisfy the stream consumer constraints
(Section 4.6.3).

• Finally we argue that a stream producer and a stream consumer, where both satisfy
the respective constraints, can be fused so that the stream’s state is encoded as
control-flow rather than as dynamically allocated data (Section 4.6.4–4.6.5).

As mentioned, we use an inductive argument to explain why we can fuse all the trans-
formers and producers into a single producer. The induction hypothesis is simply that
the producer satisfies the producer constraints. As is typical with inductive arguments,
some parts of the induction hypothesis are there because we need them to be there at the
end, i.e. for the stream consumer/producer fusion, while others are there just to make
the induction hypothesis strong enough for the induction step go through, i.e. for the
stream transformer/producer fusion.

4.3.4 State shapes in the allocation argument

The specific steps above that remove allocations are the transformer/producer fusion
and consumer/producer fusion steps. Each removes exactly one allocation per sequence
element. These are the only points where the genuine savings due to stream fusion
accrue.
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There is another class of allocations that are eliminated as part of the stream con-
sumer/producer fusion step. Eliminating this class of allocations does not represent
an overall saving however because these are allocations that we introduced ourselves
by using stream versions of functions rather than ordinary list versions. Recall from
Section 1.4.3 that to increase the expressiveness of stream functions we use multiple state
shapes represented by patterns of data constructors. The allocations for these extra data
constructors pose a problem because we cannot afford for stream versions of functions
to use any more allocations than their list counterparts. The solution we propose in
Section 1.4.3 is for stream functions to be able to use these additional allocations ‘for
free’ by us promising somehow to eventually eliminate all the data constructors used to
represent the state shapes.

The call pattern specialisation transformation can eliminate the data constructors we are
interested in, subject to a number of preconditions on the stream stepper functions. We
can thus construct an overall argument as follows:

• We assign a set of state shapes to each stream producer.

• Some of the stream producer constraints are specified in terms of these state shapes.

• For the inductive step where we fuse stream transformers with stream producers:

– we assign the state shapes of the fused producer to be the composition of the
state shapes of the constituent transformer and producers;

– the composition is such that eliminating the allocations for the composed
state shapes is equivalent to separately eliminating the allocations for the
state shapes of the original transformer and producers.

• Finally in the consumer/producer fusion step we argue that the combination of
the producer and consumer constraints guarantees that we can apply call pattern
specialisation and eliminate all the constructors used to represent the state shapes.

Thus overall, if stream producers, transformers and consumers satisfy their respective
constraints then we can eliminate the allocations used by the representation of stream
state shapes.

When writing stream functions we think of the state shapes as arising from the syntax of
the definitions we write. For the purposes of the allocation argument however we consider
the state shapes to be assigned to the producer and that the producer follows the rules.
This view is helpful because in the inductive step we appear to have a choice about what
the state shapes of the fused producer ought to be. We choose the option that makes the
allocation accounting work out. This choice of state shapes then entails some further
optimisation of the fused stream’s stepper function to bring it into compliance with the
producer constraints for the new set of state shapes (see Section 4.5.5).
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4.4 State machine view

The stream producers that satisfy the producer constraints have the property that they
can be viewed as a kind of state machine. This state machine view is a useful abstraction.
The state machines can be composed. The state machine of a fused stream is the
composition of the state machines of its components. It is also possible to view the way
a stream is fused with a consumer as ‘compiling’ the state machine corresponding to the
stream.

The state machine view is also useful as a pedagogical tool to help explain the behaviour
of streams and how to write them. In particular it lets us visualise streams as simple
state machine diagrams.

4.4.1 The basic correspondence

We can view a stream as a state machine by considering the stream’s stepper function as
a state transition function. The internal stream states correspond to the state machine
states. The initial stream state denotes the initial state in the state machine. The
transitions of the state machine are labelled with Step actions. The final state in the
state machine is reached via a Done transition.

Streams are of course not restricted to a finite number of internal states. The correspond-
ing state machines therefore cannot be finite state machines. Nevertheless we can present
these state machines as graphs with finite numbers of nodes and edges. Instead of graph
nodes representing individual states, they represent state shapes which are parametrised
collections of states. The transitions between state shapes are similarly parametrised.

As we described in Section 1.4.3, many stream’s internal states are divided into a
number of different ‘modes’. In Chapter 3 we took advantage of these modes (and
transitions between modes) to help us structure fixpoint induction properties, using
different properties for different modes. Recall for example (Section 3.9.6) that zips has
two modes and that it alternates between them each time it consumes an element from
one of the two input streams. In the state machine view, state machine graph nodes
correspond exactly to stream modes.

To illustrate the state machine perspective, consider a very simple stream that enumerates
the integers from 0 to 9. Like all streams, it consists of a stepper function and an initial
state

Stream next 0

The state is an integer, with 0 as the initial state. The next function is

next n | n < 10 = Yield n (n + 1)
| otherwise = Done

As we consume this stream step by step, the internal stream state will proceed through
the values 0 . . 9 until finally we get to Done. This simple stream has just a single mode.
The corresponding state machine diagram is given in Figure 4.2. The state machine has
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n0

not (n < 10)→ Done

n < 10→ Yield n (n + 1)

Figure 4.2: State machine for a stream which enumerates 0 . . 9

states for each value 0 . . 9 and also a terminal state. The key feature of this state machine
description is that we group the states 0 . . 9 together into a single node parametrised by
a variable n.

The Done transition leads to the terminal state which is a separate node in the state
machine diagram. The primary node has two outgoing transitions

n < 10 → Yield n (n + 1)
not (n < 10)→ Done

These transitions correspond to a stream’s stepper function returning Done or returning
Yield with a new stream state. The transitions are labelled with their Step constructor,
which in the case of Skip and Yield give the new state variable(s) for the target node.
The Step labels are the actions of the state machine; they are the observations that
external code makes as it unfolds the stream. The transitions are also guarded with
predicates. Since streams are deterministic, in the corresponding state machines, the
predicates on the transitions do not overlap.

4.4.2 Stream transformers as state machines

In addition to simple stream producers, we can also view stream transformers as state
machines. Consider, for example, maps

maps :: (a → b)→ Stream a → Stream b
maps f (Stream next0 s0) = Stream next s0
where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x ) s ′

The corresponding state machine diagram is given in Figure 4.3. Like the previous
example, it has two nodes: the primary node and a terminal node. The primary node has
three outgoing transitions. The predicates in these transitions are Step data constructor
patterns. The three transitions correspond to demanding a single step from the input
stream and then depending on whether it was Done, Skip or Yield , making a transition
into a new state.
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s

s0 Done → Done

Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x ) s ′

Figure 4.3: State machine view of maps stream function

s

s0 Done → Done

Skip s ′ → Skip s ′

Yield x s ′ | p x → Yield x s ′

Yield x s ′ | not (p x )→ Skip s ′

Figure 4.4: State machine view of filter s stream function

Note that whenever we have a state that can transition by accepting a Step from an
input stream then we must have transitions for each of Done, Skip and Yield . We do
not get to choose the input Step; we must be prepared to accept any possible Step (if
necessary using a transition to an error state).

The filter s function is structurally very similar

filter s :: (a → Bool)→ Stream a → Stream a
filter s p (Stream next0 s0) = Stream next s0
where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ | p x → Yield x s ′

| otherwise → Skip s ′

The corresponding state machine (in Figure 4.4) again has one primary state node. It
has one input stream and the transitions for Yield are predicated on the yielded values

Yield x s ′ | p x → Yield x s ′

Yield x s ′ | not (p x )→ Skip s ′

Alternative general syntax for transition predicates

The above syntax for transition predicates is a convenient shorthand that leaves the
choice of the input stream implicit. It is suitable when there is just one input stream
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and even with multiple input streams there is usually no problem of ambiguity. We will
use this shorthand syntax throughout this chapter since all the transition predicates we
need to use are of the simple variety.

In general however the state machine transition predicates can include multiple pattern
bindings and predicate expressions. While not a problem for the examples in this chapter,
it would be useful to have a syntax capable of expressing the general case. A suitable
syntax is the Haskell language extension known as pattern guards (Erwig and Peyton
Jones, 2001). This allows a sequence of expressions matched against patterns and Boolean
predicates. Variables bound in patterns can be used in subsequent predicates, expressions
and the result.

⟨pat1⟩ ← ⟨exp1⟩, ⟨pred2⟩, ⟨pat3⟩ ← ⟨exp3 ⟩, . . . → ⟨result⟩

The above transitions for filter s would be written as

Yield x s ′ ← next0 s , p x → Yield x s ′

Yield x s ′ ← next0 s , not (p x )→ Skip s ′

In the general case, for each transition, at most one pattern may match one of the Step
constructors from one input stream. As mentioned previously, the state machines are
deterministic so the transition predicates may not overlap.

4.4.3 State machines with multiple state shapes

Let us look at an example with a non-trivial stream state, and correspondingly with
multiple state shapes. Recall from Section 1.4.3 that we derived the following definition
for the stream version of the init function.

init s :: Stream a → Stream a
init s (Stream next0 s0) = Stream next (Nothing , s0)
where
next (Nothing , s) = case next0 s of

Done → error "init: empty stream"

Skip s ′ → Skip (Nothing , s ′)
Yield x s ′ → Skip (Just x , s ′)

next (Just x , s) = case next0 s of
Done → Done
Skip s ′ → Skip (Just x , s ′)
Yield x ′ s ′ → Yield x (Just x ′, s ′)

The corresponding state machine in Figure 4.5 has two primary nodes (in addition to a
terminal error node and the usual terminal node). The two state shapes are (Nothing , s)
and (Just x , s). These state shapes statically partition the reachable state space of
(Maybe a, s).
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(Nothing
, s)

(Just x
, s)

⊥

(Nothing , s0)

Done → ⊥

Yield x s ′ → Skip (Just x , s ′) Done → Done

Yield x ′ s ′ → Yield x (Just x ′, s ′)

Figure 4.5: State machine view of init s stream function

Left
(sa , sb)

Right sb

Left (sa , sb)

Yield x s ′a → Yield x (Left (s ′a , sb))

Done → Skip (Right sb) Done → Done

Yield x s ′b → Yield x (Right s ′b)

Figure 4.6: State machine view of append s stream function

4.4.4 Multiple input streams

The state machine view works for stream transformers that consume multiple streams.
The transitions simply have to indicate which input stream they refer to.

Consider the append s function

append s :: Stream a → Stream a → Stream a
append s (Stream nexta sa) (Stream nextb sb) = Stream next (Left (sa , sb))
where
next (Left (sa , sb)) = case nexta sa of

Done → Skip (Right sb)
Skip s ′a → Skip (Left (s ′a , sb))
Yield x s ′a → Yield x (Left (s ′a , sb))

next (Right sb) = case nextb sb of
Done → Done
Skip s ′b → Skip (Right s ′b)
Yield x s ′b → Yield x (Right s ′b)

The corresponding state machine (in Figure 4.6) has two main nodes: the state shapes
Left (sa , sb) and Right sb .

4.4.5 An approach to formalising the state machine view

While in this chapter we present only semi-formal arguments, it is useful and interesting
to draw connections with theory that one might use to formalise the arguments.
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A stream defines a deterministic labelled state transition system (Arnold, 1994). The state
space is the type of the stream’s internal state. The grouping of states into parametrised
nodes can be formalised as state values which is a state vector associated with each state.
The transitions are given by the stream’s stepper function. The transitions are labelled
with the step action: done, skip or yield with a value.

The semantics of the stream is given by the trace of the transition system. Since the
transition systems are deterministic there is only a single trace. If the skip action is
considered as the hidden τ action then stream equivalence can be described by weak
trace equivalence.

If we take a stream that is the composition of a stream transformer with a stream producer,
its transition systems can be described by the synchronous product of the transition
systems of the two component streams. Specifically, we can write a synchronisation
constraint that ensures that the stream producer makes a step only when the stream
transformer is ready to accept the same step. This description also explains why producers
that yield in multiple places leads to the duplication of states (see Section 4.5.8). In the
free product of transition systems we get the binary product of states; the synchronous
product restricts the states to a subset of the full product.

4.5 Stream transformer/producer fusion

Stream transformer/producer fusion is the transformation whereby the application of
a single stream transformer to one or more stream producers is fused to give a single
optimised stream producer. This section contributes a component of the overall argument
outlined previously in Section 4.3.3: that this transformation always gives a stream
producer that satisfies the constraints. That the transformation reduces allocations is
covered in Section 4.7.9.

In the overview in Section 4.3.2 we gave the following example of stream transformer/
producer fusion

zipWiths (×) (enumFromTos 0 9) (enumFromTos 10 19)
=
Stream next (0, 10,Nothing)
where
next (n,m,Nothing) | n 6 9 = Skip (n + 1,m, Just n)

| otherwise = Done

next (n ′,m, Just n) | m 6 19 = Yield (n ×m) (n ′,m + 1,Nothing)
| otherwise = Done

In this example we have the stream transformer zipWiths applied to two instances of
the stream producer enumFromTos . The fused result uses exactly two fewer allocations
per sequence element. The Step constructors used by each of the two instances of
enumFromTos have been eliminated.

More generally, the transformation takes a stream transformer and stream producers that
satisfy the stream producer constraints and gives an equivalent stream that also satisfies
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the stream producer constraints. Crucially, the fused stream uses fewer allocation per
sequence element, in particular it eliminates the Step constructors used by each stream
producer.

At the core of stream transformer/producer fusion is the case-of-case transformation. As
we saw in Chapter 1, the case-of-case transformation is the core of both unbuild/unfoldr
fusion (Section 1.3.8) and of stream fusion (Section 1.4.2). It is the core transformation
in the sense that it is the one that actually removes allocations. While applying the
stream/unstream fusion rule also removes allocations, it only removes allocations that
were previously introduced by using fusible definitions of the list functions. It is not
illegitimate to take the view the whole stream fusion system is a complex method of
rearranging code so as to be able to apply the simple case-of-case optimisation.

4.5.1 A simple example

For the zipWiths example above, two instances of case-of-case are required: one for each
of the two producers. Since the general case allows for stream transformers applied to
multiple producers, it is useful to keep the zipWiths example in mind. To illustrate the
details of the transformation however we will use a smaller and simpler example.

enum10 :: Stream Int
enum10 = snocs (enumFromTos 0 9) 10

This stream is constructed from a stream that enumerates 0 . . 9 and the stream transformer
snocs that appends a final element5.

The enumFromTos function is defined as before, except that for clarity we rename the
local next function to indicate its origin and we desugar the Boolean guards into a case
expression.

enumFromTos :: Int → Int → Stream Int
enumFromTos n m = Stream nextenum n
where
nextenum n = case n 6 m of

True → Yield n (n + 1)
False → Done

The snocs function is defined as

snocs :: Stream a → a → Stream a
snocs (Stream next0 s) y = Stream next snoc (Just s)
where
next snoc (Just s) = case next0 s of

Done → Yield y Nothing
Skip s ′ → Skip (Just s ′)
Yield x s ′ → Yield x (Just s ′)

next snoc Nothing = Done

The corresponding state machines are given in Figure 4.7.

5The function snoc is so named, as a pun on the name cons, because it is the reverse of cons.
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n0

not (n < 10)→ Done

n < 10→ Yield n (n + 1)

Just s Nothing

Just s Done → Yield 10 Nothing Done

Yield x s ′ → Yield x (Just s ′)

Figure 4.7: State machine view of enumFromTos 0 9 and snocs

The behaviour of snoc is first to yield each element of its input stream. It yields the
additional final element when the input stream finally produces Done. Of course after
this there is nothing to do but to produce Done. A stream cannot produce both Yield
and Done in a single step however, so it must move into another state in which it produces
Done. Thus this stream has two modes Just s and Nothing .

Let us start with the application of the stream transformer snocs to the stream producer
enumFromTos 0 9

snocs (enumFromTos 0 9) 10

We can unfold the definition of enumFromTos to expose the Stream constructor. We
also get the stream’s stepper function as an associated local definition.

snocs (enumFromTos 0 9) 10
=
snocs (Stream nextenum 0) 10
where
nextenum = . . .

The next step is to unfold snocs . The snocs function matches on the input stream and
exposes a Stream result.

snocs (Stream nextenum 0) 10
where
nextenum = . . .

=
Stream next snoc (Just 0)
where
next snoc = . . .
nextenum = . . .

Note that the top level structure of the term consists of a Stream term with associated
local definitions and that the initial stream state identifies one of the stream state shapes.

We can now optimise this stream’s stepper function so that it uses fewer allocations. The
first step is simply to unfold the definition of nextenum in the ‘scrutinee’ position of the
case expression
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Just n Nothing

Just 0 not (n 6 9)→ Yield 10 Nothing Done

n 6 9→ Yield n (Just (n + 1))

Figure 4.8: State machine view of fused snocs (enumFromTos 0 9) 10

next snoc (Just s) = case (case s 6 9 of
True → Yield s (s + 1)
False → Done)

of
Done → Yield 10 Nothing
Skip s ′ → Skip (Just s ′)
Yield x s ′ → Yield x (Just s ′)

next snoc Nothing = Done

We are now in a position to apply the case-of-case transformation, which leaves us with

next snoc (Just s) = case s 6 9 of
True → Yield s (Just (s + 1))
False → Yield 10 Nothing

next snoc Nothing = Done

This eliminates the allocation of the Step constructors in each branch of the inner case
expression. The corresponding state machine for this final fused version is given in
Figure 4.8. It is instructive to compare this state machine with those from Figure 4.7.

4.5.2 The basic case-of-case transformation

Note that strictly speaking, ‘case-of-case’ refers only to the first of two steps that make
up the transformation. If we were to more closely follow the terminology of Santos (1995)
then we should more correctly refer to the overall transformation as the combination of
the case-of-case transformation followed by case reduction. Since the two are so often
used together and the main purpose of case-of-case is to expose opportunities for case
reduction, then we and other authors tend to refer only to case-of-case, leaving implicit
the fact that case reduction is also involved.

We typically present the combination of the case-of-case transformation followed by case
reduction as a single step. To understand and to generalise the transformation, it is useful
to look at the two component transformations separately. We start with the following
situation
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case (case s 6 9 of
True → Yield s (s + 1)
False → Done)

of
Done → Yield 10 Nothing
Skip s ′ → Skip (Just s ′)
Yield x s ′ → Yield x (Just s ′)

The first step is to push the outer case expression through the inner one, duplicating
it into each branch. This is the step known properly as the case-of-case transformation
(Santos, 1995, Section 3.5.2). Consider, for a moment, just one of the branches of the
inner case expression.

case (case s 6 9 of
True → Yield s (s + 1)
. . . )

of
. . .
Yield x s ′ → Yield x (Just s ′)

Pushing the outer case through and into this branch gives us

case s 6 9 of
True → case Yield s (s + 1) of

. . .
Yield x s ′ → Yield x (Just s ′)

. . .

Of course now we have a situation where we have a “case expression scrutinising a
known constructor” (Santos, 1995, Section 3.3.1). The second step is to reduce the
case-of-known-constructor. In this example we have the term Yield s (s + 1) matched
against the pattern Yield x s ′ which gives us the substitution x := s , s ′ := s + 1. The
result then, is the term in the Yield branch of outer case, but with the substitution
applied

(Yield x (Just s ′)) [x := s , s ′ := s + 1]
=
Yield s (Just (s + 1))

And this is the final result term in the True branch. Taking the same approach for all
the branches give the following intermediate result

case s 6 9 of
True → (Yield x (Just s ′)) [x := s , s ′ := s + 1]
False → (Yield 10 Nothing ) [{empty substitution } ]

Applying the substitutions gives us the final result

case s 6 9 of
True → Yield s (Just (s + 1))
False → Yield 10 Nothing

The case-of-case transformation is described in more detail by by Santos (1995, Sec-
tion 3.5.2) and again by Peyton Jones and Santos (1998, Section 5).
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4.5.3 State shape matching

Having considered simple examples, it is tempting to presume that we can always use
the case-of-case transformation to fuse multiple stepper functions to give a single stepper
function that fits the state machine form. The reality, unfortunately, is not quite so
simple. We will illustrate the problem with an example and consider the options to make
the system work in the general case.

Consider the stream transformer zips (presented previously in Section 3.9.6).

zip :: Stream a → Stream b → Stream (a, b)
zip (Stream nexta sa) (Stream nextb sb) = Stream next (sa , sb ,Nothing)
where
next (sa , sb ,Nothing) = case nexta sa of

Done → Done
Skip s ′a → Skip (s ′a , sb ,Nothing)
Yield a s ′a → Skip (s ′a , sb , Just a)

next (s ′a , sb , Just a) = case nextb sb of
Done → Done
Skip s ′b → Skip (s ′a , s

′
b , Just a)

Yield b s ′b → Yield (a, b) (s ′a , s
′
b ,Nothing)

This transformer has an internal state type of (sa , sb ,Maybe a), where sa and sb are the
internal state types of the two input streams. The stepper function next has two modes,
using the state shapes ( , ,Nothing) and ( , , Just ). The important point to note
about this stepper function is that sa is only scrutinised in the first mode, and sb only
in the second. The first mode passes sb around without inspecting it, while the second
mode does the same with s ′a .

We will now consider what happens if we fuse zips with producers that use multiple state
shapes. For the sake of argument we will use the following contrived stream producer.

toggles :: Int → Stream Int
toggles n = Stream next n
where
next (Left n) = Yield n (Right (n + 1))
next (Right n) = Yield n (Left (n − 1))

This producer uses an internal state type of Either Int Int and has two state shapes
Left and Right . If we apply zips to two copies of toggles and fuse them together,
then the resulting stream will have the following internal state type

(Either Int Int , Either Int Int , Maybe Int)

We will expect the stepper function to use the following eight state shapes, which are
simply the product of the shapes of the transformer with those of the two producers.

(Left ,Left , Just )
(Left ,Right , Just )
(Right ,Left , Just )
(Right ,Right , Just )
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(Left ,Left ,Nothing)
(Left ,Right ,Nothing)
(Right ,Left ,Nothing)
(Right ,Right ,Nothing)

Let us now check the actual result. We start by combining the stepper function of zips

with two copies of the stepper function for toggles .

next (sa , sb ,Nothing) = case (case sa of
Left n → Yield n (Right (n + 1))
Right n → Yield n (Left (n − 1)))

of
Done → Done
Skip s ′a → Skip (s ′a , sb ,Nothing)
Yield a s ′a → Skip (s ′a , sb , Just a)

next (s ′a , sb , Just a) = case (case sb of
Left m → Yield m (Right (m + 1))
Right m → Yield m (Left (m − 1)))

of
Done → Done
Skip s ′b → Skip (s ′a , s

′
b , Just a)

Yield b s ′b → Yield (a, b) (s ′a , s
′
b ,Nothing)

If we now apply the case-of-case transform we obtain the following rather simpler stepper
function

next (sa , sb ,Nothing) = case sa of
Left n → Skip (Right (n + 1), sb , Just n)
Right n → Skip (Left (n − 1), sb , Just n)

next (s ′a , sb , Just n) = case sb of
Left m → Yield (n,m) (s ′a ,Right (m + 1),Nothing)
Right m → Yield (n,m) (s ′a ,Left (m − 1),Nothing)

This stepper function does not use state shapes in the expected standard way. The set of
shapes it matches on is not the same as the set of shapes used as the target of Skip/Yield
transitions. It matches on these four state shapes

(Left , ,Nothing)
(Right , ,Nothing)
( ,Left , Just )
( ,Right , Just )

While it targets these four

( ,Left ,Nothing)
( ,Right ,Nothing)
(Left , , Just )
(Right , , Just )

This poses a problem. For a simple approach to fusing transformers with producers, we
would like all combinations of stepper functions to be able to fuse such that they have
the state machine form – where the set of source and target nodes are the same.
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The options

We have two options. We can do an additional transformation at this stage to preserve
the simpler conditions. Alternatively we can weaken the conditions we place on stepper
functions – to allow examples such as the above – and then deal with the more complex
situation in the final stage when we fuse consumers with producers.

For the first option, we could at this stage specialise the stepper function on all of the
state shapes, thereby restoring the property that the stepper function corresponds to a
simple state machine. The advantage of this option is that the transformation is relatively
simple to explain and to perform. The conditions we place on stream producers also
remain relatively simple. The primary disadvantage of this option is that it is not what
real implementations of stream fusion do in practice. If we wish to maintain that stream
fusion can be implemented using only general purpose optimisations then we should
not use this method because it is unreasonable to expect a general purpose compiler to
perform the needed specialisation at this stage: it does not appear to have a general
benefit at this point.

The alternative option corresponds more closely to what real implementations of stream
fusion do in practice. It involves defining weaker conditions on stream producers and, in
the final stream producer/consumer fusion stage, relying on call pattern specialisation
(and extensions thereof) to resolve everything appropriately. The disadvantage is that
both the transformation and the explanation are more complex. Worse, it is not entirely
clear that the method is universal. For these reasons, for the purpose of the optimisation
argument, we will take the simpler approach. We will however explain how the other
approach works – at least in the cases where it clearly does work. We defer further
consideration of the more complex approach to Section 4.6.6.

Strong state shape matching and specialisation

For the simple approach it is useful to define a notion that we will call strong state
shape matching. Strong state shape matching is simple: every part of each state shape
is scrutinised. This is easy to see syntactically if the stepper function is written in an
equational style; the function will have exactly one clause for each state shape which will
pattern-match exactly on that shape, e.g.

next (Left n, Left m,Nothing) = . . .
next (Left n, Right m,Nothing) = . . .
. . .
next (Right n,Right m, Just n) = . . .

This is the form we want for our example – the fused zips stepper function. We can get
it into this form by specialising.

The specialising transformation is straightforward. We build a new stepper function by
parts using pattern matching. The function is defined for each state shape to be the
original stepper function but specialised for that state shape. The new stepper function
is equal to the original because it is equal for each state shape and the state shapes
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partition the state type. Of course multiple clauses with these simple patterns are just
syntactic sugar, via the standard pattern matching algorithm, for a single definition using
a tree of case expressions.

We start with the original stepper function

next s = ⟨body⟩

Then for each state shape we generate a clause: the state shape is used as a pattern
which may binds variables, the body of the clause is the body of the original stepper
function but the state parameter substituted for the state shape pattern.

next ′ ⟨shapex ⟩ = ⟨body⟩[s := ⟨shapex ⟩ ]

We then simplify the body in each clause by reducing cases of known constructors.

With the example fused zips stepper function we start with the following

next s = case s of
(sa , sb ,Nothing)→
case sa of
Left n → Skip (Right (n + 1), sb , Just n)
Right n → Skip (Left (n − 1), sb , Just n)

(sa , sb ,Nothing)→
case sb of
Left m → Yield (n,m) (s ′a ,Right (m + 1),Nothing)
Right m → Yield (n,m) (s ′a ,Left (m − 1),Nothing)

For the first state shape (Left n,Left m,Nothing), we have

next ′ (Left n,Left m,Nothing)
=
⟨body⟩[s := (Left n,Left m,Nothing)]

=
case (Left n,Left m,Nothing) of
(sa , sb ,Nothing)→
case sa of
Left n → Skip (Right (n + 1), sb , Just n)
Right n → Skip (Left (n − 1), sb , Just n)

. . .

If we now reduce the cases of known constructors we are left with

next ′ (Left n,Left m,Nothing) = Skip (Right (n + 1),Left m, Just n)

The clauses for the other seven state shapes follow similarly.
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4.5.4 Stream producer constraints

We impose a number of constraints on stream producers and transformers. In this section
we will describe the constraints. In the next section we will argue that these constraints
are sufficient to ensure that we can always successfully fuse stream transformers with
stream producers. We will also rely on these constraints in Section 4.6 to make a
similar argument about fusing stream consumers with stream producers. In addition,
some constraints relate to the correct handling of Skip and to the allocation accounting
argument.

We describe the constraints both in terms of a number of syntactic conditions and in
terms of some higher level properties. We are primarily interested in the properties, the
syntactic conditions are the route to achieving the desired properties. Again, we do
not attempt to specify the most general syntactic form, our aim is to specify something
simple and just sufficiently expressive.

Syntactic conditions

Recall from Section 4.2.1 that we defined the top level structure of good list producers
so that we could always unfold them to expose an application of unstream. We impose
similar conditions on stream producers to ensure that we can always unfold them to
expose a Stream constructor applied to a stepper function and initial state.

Producer condition 1 (top level syntactic form). We stipulate that, syntactically,
stream producers look like

f x = Stream (. . .) (. . .)
where . . .

or

f x = h (. . .)
where . . .

Where h is some existing stream producer. That is, at the top level we allow any mixture
of lambda abstraction and let binding (or equivalently, where clauses). The first body
term must either be Stream or another stream producer. We have the usual requirement
that the collection of stream producers is finite; that all definitions are available; and
that where producers are defined in terms of other producers, that the definitions do
not form cycles. This guarantees that we can unfold any fully applied stream producer
function to expose a Stream constructor along with a stepper function and initial state.

Producer condition 2 (top level of transformers). For stream transformers there is an
additional constraint: that all input streams are matched on at the top level.

t x a b = case a of Stream nexta sa →
case b of Stream nextb sb → Stream (. . .) (. . .)

where . . .

This guarantees that saturated applications of transformers can be reduced to expose
the Stream constructor result.
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Producer condition 3 (stepper functions are case expression trees). The general
syntactic form for a stream stepper function is a tree of case expressions; that is,
case expressions possibly with more case expressions in the branches and finally Step
constructors in the leaves.

Producer condition 4 (strong state shape matching). If the stream uses multiple state
shapes then the top level of the case expression tree must match on all of these shapes.

next s = case s of
Mode1 → . . .
Mode2 → . . .
. . .

If the state shapes are represented with compound data constructors then nested cases
will be required. Strong state shape matching is required: every part of each state shape
must be scrutinised (see Section 4.5.3).

State shapes that make use of nested constructors are very common; in earlier sections
we used examples that use combinations of pair, Maybe and Either data constructors.
The init s function, for example, used shapes (Nothing , s) and (Just x , s). It is essential
that compound constructors can be used for state shapes because such cases occur when
fusing stream functions.

Producer condition 5 (scrutinee terms in case expression trees). Within the tree of
case expressions, below the matching on the state shapes, we may have further case
expressions.

next s = case s of
Mode1 sa → case nexta sa of

. . .
Mode2 x → case h x of

. . .
where
h = fix (. . .)

The scrutinee of these case expressions may be either:

• an application of an input stream’s stepper function, which may only appear in the
tree directly below the matching on the state shapes;

• some other arbitrary term that does not use any stream stepper function (neither
those of input streams nor recursive use of the stepper function being defined).

In particular, in the latter case it is acceptable to use recursive functions, just not to make
a recursive call to the stepper function. Local definitions may also be used, provided
they do not use any stream stepper function.

In previous examples we have used Haskell’s guard syntax with Boolean predicates.
This is acceptable because it desugars into case expressions on terms of Boolean type.
Similarly, function definitions using simple patterns also desugar into case expressions.
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Producer condition 6 (result state terms are state shapes). The leaves of this tree of
case expressions must be the application of a Step constructor: Done, Skip or Yield . In
the case of Skip and Yield the new state must manifestly be one of the state shapes.

next s = case s of
Mode1 sa → case nexta sa of

Done → . . .
Skip s ′a → Skip (Mode1 s ′a . . .)
Yield x s ′a → Yield (. . .) (Mode2 . . .)

The Yield element and the variables within each state shape result can be arbitrary
terms, with the proviso that they do not use any stream stepper function.

Producer condition 7 (skip handling). For case expressions that scrutinise the result
of an input stream’s stepper function, the result in the Skip branch must be Skip.
Furthermore, the result state shape must be the same as the state shape matched in the
branch of the top level case expression. In the above example, all Skip results under the
Mode1 branch of the top level case expression are also Mode1 .

Producer condition 8 (single use of stepper functions). Tracing down the paths of the
tree of case expressions, in each path, there there may be at most one use of an input
stream stepper function.

Producer condition 9 (initial state is a state shape). The initial stream state must be
manifestly one of the state shapes.

Summary grammar

We can approximate the syntactic conditions with the following grammar. To capture
some of the conditions we specify a side condition that some of the non-terminals must
be used maximally. These cases are noted below.

⟨good producer⟩ ::= f = ⟨top⟩
⟨top⟩ ::= λa → ⟨top⟩

| let . . . in ⟨top⟩
| h {⟨expr⟩}
| ⟨top stream⟩

⟨top stream⟩ ::= case a of Stream nextx sx → ⟨top stream⟩
| let next s = ⟨case tree top⟩
in Stream next ⟨state shape expr⟩

⟨case tree top⟩ ::= case sx of
Shape1 s1 1 s1 2 . . .→ ⟨case tree top⟩
Shape2 s2 1 s2 2 . . .→ ⟨case tree top⟩
. . .

| ⟨case tree middle⟩
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⟨case tree middle⟩ ::= case nextx sx of
Done → ⟨case tree leaf ⟩
Skip s ′x → Skip ⟨state shape expr⟩
Yield a s ′x → ⟨case tree leaf ⟩

| ⟨case tree bottom⟩
⟨case tree bottom⟩ ::= case ⟨expr⟩ of

. . .→ ⟨case tree bottom⟩

. . .
| ⟨case tree leaf ⟩

⟨case tree leaf ⟩ ::= Done
| Skip ⟨state shape expr⟩
| Yield ⟨expr⟩ ⟨state shape expr⟩

⟨state shape expr⟩ ::= Shapex {⟨state shape expr⟩}
| ⟨expr⟩

In ⟨top⟩, h must refer to another good stream producer.

The following non-terminals must be used maximally

• ⟨top stream⟩: stream transformers must match all their stream inputs.

• ⟨case tree top⟩: all state shapes must be matched.

• ⟨case tree middle⟩: ⟨case tree bottom⟩ is not allowed to match case nextx sx of .

• ⟨state shape expr⟩: the expression has to correspond to a state shape.

Properties arising from the syntactic conditions

Producer property 1 (static nodes and transitions). The stream stepper function
must manifestly identify the input state shape and result state shape. This constraint
is implicit in the state machine viewpoint since we require that the stepper function
correspond to a set of transitions between nodes and the transition arrows identify a
source and target node. This property constraint corresponds to syntactic condition 4
that the top level case expression must match on all the state shapes and condition 6
that the Skip and Yield results must use one these same state shapes.

This constraint is crucial for the optimisation arguments we will make in Section 4.6.
The key is that the state shapes and the state transitions between them are statically
known.

As an example of what this constraint excludes, consider a stream similar to init s that
uses nodes with the shapes (Nothing , s) and (Just x , s) but which has the following
transition label

Yield x s ′ → Yield x (f x , s ′)

This is not an acceptable transition because it does not manifestly identify the target node.
One cannot draw this transition in a state machine diagram. The state it transitions into
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depends on the result of f x . To be acceptable, this bad transition must be refactored
into two guarded transitions.

Yield x s ′ | p x → Yield x (Just (g x ), s ′)
Yield x s ′ | not (p x )→ Yield x (Nothing , s ′)

Here we still do a dynamic test on x but now we identify the target nodes explicitly.

Producer property 2 (input skips). For stream transformers, when a step is demanded
from an input stream and that input stream step turns out to be a skip then the overall
transition must also be a skip. Furthermore it is a skip transition back to the same node,
though with appropriate updated state variable(s). This constraint guarantees that the
stream transformer is oblivious to skips, which, as we recall from Chapter 3, is necessary
for the correctness of fusion on skipping streams.

Producer property 3 (one input step per transition). Another constraint that affects
stream transformers is that each transition may demand at most one step from the input
streams. That is, a single transition may not demand multiple steps from a single input
stream, or a step from more than one input stream.

This property follows from syntactic condition 8 about the occurrences of stream stepper
functions in the paths of the tree of case expressions. The syntactic condition is slightly
stronger than is necessary for the property we want, however there is little to no benefit
in trying to demand multiple steps from input streams in a single transition of the overall
stream. The stronger syntactic constraint can be thought of as merely a simplification.

To see why there is no benefit, consider the zips function. It has two input streams and
its stepper function has to obtain an element from each input stream before it can yield
the pair of elements. We might think about trying to write the step function in the
following way

next (sa , sb) = case nexta sa of
Done → . . .
Skip s ′a → . . .
Yield a s ′a → case nextb sb of

Done → . . .
Skip s ′b → . . .
Yield b s ′b → Yield (a, b) (s ′a , s

′
b)

But what about the case where nextb sb gives us Skip? There must be some mode to
transition into. We might consider discarding the element and new state obtained from
the first stream and transition back to the main node with an updated state from the
second stream:

next (sa , sb) = case nexta sa of
Done → . . .
Skip s ′a → . . .
Yield a s ′a → case nextb sb of

Done → . . .
Skip s ′b → Skip (sa , s

′
b)

Yield b s ′b → . . .
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Of course this is not acceptable because of the danger of repeating the work (and
allocations) done to obtain the element from the first stream.

We might think about recursing until the second stream gives us either Done or Yield .
This is not an option, firstly because such recursion is not allowed (see property 4) and
secondly because it would violate property 1: the transition would not statically identify
the target state node.

There must be a specific stream mode representing the situation where we have obtained
an element from the first stream but not yet obtained one from the second. In this mode
we must be prepared to handle the second stream skipping multiple times.

Even given that we need a separate mode we might optimistically consider trying to pull
from both input streams in one step and only if the second skips would we move into the
separate state.

next (sa , sb ,Nothing) = case nexta sa of
Done → . . .
Skip s ′a → . . .
Yield a s ′a → case nextb sb of

Done → . . .
Skip s ′b → Skip (s ′a , s

′
b , Just a)

Yield b s ′b → . . .

next (s ′a , sb , Just a) = case nextb sb of
. . .

There is however no benefit in trying to do this. It is considerably simpler to skip to the
(s ′a , sb , Just a) mode after obtaining an element from the first stream.

Producer property 4 (no recursion). Recall from the first chapter (specifically Sec-
tion 1.4.2) that eliminating recursion in the stepper functions is what enabled stream
fusion to be an optimisation in the filter example where it was not an optimisation under
the unbuild/unfoldr system. It should come as no surprise therefore that we impose a
constraint on the use of recursion in stepper functions.

It is interesting to note that this constraint is almost redundant given the first constraint
about statically identifying source and target nodes. There is very little interesting
that we could do with a recursive stepper function while still statically identifying the
target state mode. Nevertheless we must ban stepper functions such as the following
for although there is only one target mode the fixpoint will still get in the way of the
case-of-case transformation.

next s = f s
where
f s | p s = f (g s)
| otherwise = Yield (h s) s
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This example can be trivially refactored to use a local fixpoint instead

next s = case f s of
(x , s ′)→ Yield x s ′

where
f s | p s = f (g s)
| otherwise = (h s , s)

Specifically, the no recursion constraint is that the stepper function result must not be
wrapped in a fixpoint, and for transformers, uses of the input stream’s stepper function
also must not be wrapped in a fixpoint. On the other hand it is acceptable to use
recursion in auxiliary definitions, in the scrutinee term in case expressions or to calculate
the values of variables in new states.

Producer property 5 (no allocation on skip). Parts of condition 4 and 5 about where
things occur in the tree of case expressions are related to the allocation accounting
argument (see Section 4.7.8). In particular we have the requirement that the matching
on state shapes should appear at the top of the tree and that uses of input stream’s
stepper functions should appear immediately beneath. Together these ensure that no
allocations are incurred by stream transformers when an input stream skips.

It would be possible to have a more relaxed condition so long as we could ensure that
there is no allocation on the path from the root of the expression tree to any use of an
input stream stepper function. The simpler and more stringent condition does not restrict
expressiveness however because it is possible to split a long chain of case expressions by
introducing a Skip into a new top level state shape.

4.5.5 Combining transformers with producers

The transformations for stream transformer/producer fusion follow in essentially the
same way in the general case as in the simple example of Section 4.5.1. We can justify
that the various steps are possible based on the stream producer conditions. We must
also verify that the resulting stream producer satisfies all the stream producer conditions.

As mentioned previously, the general case is a stream transformer fully applied to the
appropriate number of stream producers. The transformer and producers are assumed
to satisfy the stream producer conditions. Note that we never have to deal with a
transformer that is partially applied, or applied to a stream term that is an abstracted
variable (see Sections 4.2.3 and 4.3.1).

Top level structure

The first step is unfolding the stream producers and then the transformer to expose a
Stream constructor. This step relies on the conditions on the top-level syntactic structure
of stream producers and transformers.
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In particular, producer condition 1 ensures that stream producers can be unfolded to
give a Stream constructor applied to a stepper function and initial state.

producer x y z

= { unfold the producer }
let next s = . . .

. . .
in Stream next (. . .)

The Stream constructor may be wrapped in let expressions that supply local function
definitions such as a stepper function. For presentational convenience we have usually
used where clauses, however these desugar to let expressions.

A requirement for stream transformers (condition 2) is that input streams are decon-
structed at the top level, but within these top level case expressions, the first body term
is a Stream.

transformer a b x y

= { unfold the transformer }
case a of Stream nexta sa →
case b of Stream nextb sb →
let next s = . . .

. . .
in Stream next (. . .)

When we unfold the transformer we get each stream producer term in the scrutinee
position of the corresponding top level case expression.

case (let next s = . . .
. . .

in Stream next (. . .))

of Stream nexta sa →
. . .

We can immediately float the definitions in the let expression outwards and reduce since
we have a case of a known constructor. Since the transformer is fully applied to its
stream arguments then we can do this for all the input streams. Note that because we
substitute for all the input streams, we no longer have a stream transformer but a stream
producer. We are left with the stream transformer’s Stream constructor term and the
associated local definitions. This syntactic form satisfies the conditions on the the top
level structure (producer condition 1).

New state shapes

The next stage will be to optimise the stepper function and check that we can satisfy all
the producer conditions. Before doing any optimisation however, let us first consider the
various producer conditions as they apply to the stepper function that we have at this
stage of the transformation.
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At this stage we have essentially the same stepper function as that of the original stream
transformer. The original stepper function from the transformer refers to the stepper
functions from the transformer’s input stream parameters. The difference at this stage is
simply that the top-level unfolding step has given us local definitions for these stepper
functions.

While the stepper function is essentially unchanged, the conditions that we judge it
against have changed. As noted above, we now have a stream producer, rather than
a transformer, but more interestingly the new producer has a new set of state shapes,
which is important because many of the stream producer conditions refer to the state
shapes.

Recall from the overview in Section 4.3.4 that, for the purposes of the argument, we
assign a set of state shapes to each stream producer. The promise we are trying to keep
is that for producers that satisfy the producer constraints, we will eventually eliminate
the allocations associated with their state shapes. At this inductive step of the argument
we can assume that we can keep this promise for the original transformer and all its
input producers. If we fuse the transformer and producers into a single producer then
we need to preserve the same promise. Furthermore we must preserve the total number
of allocations associated with the state shapes, otherwise after the fusion step we might
not be able to eliminate as many allocations as before. Thus we need to assign the fused
producer a set of state shapes such that the total number of allocations is preserved.
Then with whatever set of state shapes we select, we will have to ensure that the fused
producer satisfies the producer conditions for the chosen state shapes.

One option would be to select the same set of state shapes as the transformer. That would
be easy since the stream stepper function at this stage already satisfies the producer
constraints for the state shapes of the transformer. We cannot actually select this option
of course because we would not eliminate the allocations associated with the state shapes
of the producers: they would end up as dynamic allocations rather than being compiled
into control-flow state.

We choose as the new set of state shapes to assign, the composition of the state shapes
of the transformer with those of the producers. This set is obtained by substituting all
combinations of the state shapes of the producers into the appropriate locations in the
state shapes of the transformer.

Example

To see more clearly what is going on, let us revisit the earlier simple example

enum10 = snocs (enumFromTos 0 9) 10

The internal stream state type for the snocs transformer is Maybe s, where s is the
stream state type of the input stream. As we have seen previously, the state shapes
for snocs are Just and Nothing . The internal state type for enumFromTos 0 9 is Int
with a single trivial state shape. When we apply snocs to enumFromTos 0 9 then the
new internal stream state type becomes Maybe Int . In this case, because the producer
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enumFromTos uses only a single trivial state shape, then the new state shapes are still
Just and Nothing .

As an example where both the transformer and the producer use multiple state shapes,
consider

enum11 = snocs enum10 11

That is, we take the previous example and apply snocs again. In this case the producer’s
internal state type is Maybe Int with shapes Just and Nothing and the transformer’s
internal state type isMaybe s , also with shapes Just and Nothing . With the transformer
applied to the producer, the new internal state type and state shapes are simply the
composition of the components; that is the state type is Maybe (Maybe Int) and the state
shapes are Just (Just ), Just Nothing and Nothing . The general case follows the same
pattern; the stream state types are composed giving rise to all the possible combinations
of state shapes.

Applying case-of-case

Having chosen the state shapes for the new fused producer, we can again consider the
producer conditions. The most important producer condition that is not met at this
stage is condition 4 which requires that the top level of the stepper function matches
against all the state shapes. To restore this constraint we must proceed to the next stage
and apply the case-of-case optimisation for each of the transformer’s stream inputs.

The stepper functions for both the transformer and producers are trees of case expressions
(condition 3). The aim with the case-of-case transformation is to fuse them into a single
tree of case expressions. We rely on condition 5 that the transformer’s use of its input
streams is no more complicated than a simple application nexta sa in the scrutinee
position of a case expression.

A stepper function nexta can be unfolded in the scrutinee position. This gives us a case
expression with the scrutinee term being a tree of case expressions with Step constructors
in the leaves. We rely on condition 6 that each producer has only Step terms in the leaf
positions of its tree of case expressions. This gives us a situation that is a straightforward
generalisation of the simple case-of-case described previously in Section 4.5.2. We will
cover the details of the generalised case-of-case shortly in Section 4.5.7.

Matching on state shapes

In the enum11 example, the final stepper function after applying case-of-case is the
following tree of case expressions

case s of
Just s ′ → case s ′ of

Just n → case n 6 9 of
True → Yield n (Just (Just (n + 1)))
False → Yield 10 (Just Nothing)

Nothing → Yield 11 Nothing
Nothing → Done
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J (J n) J N N

J (J 0) not (n 6 9)→ Yield 10 (J N ) Yield 11 N Done

n 6 9→ Yield n (J (J (n + 1))) Key: J = Just ,N = Nothing

Figure 4.9: State machine view of fused snocs (snocs (enumFromTos 0 9) 10) 11

Note how the new stepper function matches explicitly on all the new compound state
shapes Just (Just ), Just Nothing and Nothing . A bit of syntactic sugar makes this
clearer

next (Just (Just n)) | n 6 9 = Yield n (Just (Just (n + 1)))
| otherwise = Yield 10 (Just Nothing)

next (Just Nothing) = Yield 11 Nothing
next Nothing = Done

The corresponding state machine is given in Figure 4.9.

As discussed previously in Section 4.5.3, in the general case we cannot guarantee that, after
the case-of-case transformation, the new stepper function matches on all the compound
state shapes. In the new combined tree of case expressions, we have the matches on the
original transformer’s state shapes. Where the transformer scrutinised nextx sx we now
have a tree of case expressions which matches on the state shapes of the corresponding
producer. We would be able to guarantee that the new combined tree of case expressions
matches all the compound state shapes if the original transformer scrutinises nextx sx for
each stream state variable sx in each mode. We do not however place such a requirement
on transformers – zips could not be expressed if we did so.

Applying state shape specialisation

The solution we adopt is to apply a specialisation transformation to the stepper function,
the details of which are covered in Section 4.5.3. We note that the new stepper function
is semantically equal to the old function and we rely on the fact that, by its construction,
it matches all the state shapes (producer condition 4). We also rely on two further
properties:

1. that in the Skip and Yield results, the state term exactly matches a state shape
(producer condition 6);

2. and that the transformation does not increase allocations.

These two points need further justification.
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For the first property we are interested in the possible forms of the new state term. To
illustrates the possible cases, consider the following fragment of a transformer’s stepper
function.

next (Mode1 sa sb) = case nexta sa of
Done → Skip Mode2
Skip s ′a → Skip (Mode1 s ′a sb)
. . .

Each of the new state terms is manifestly one of the transformer’s state shapes. Now
consider the situation after case-of-case and specialisation transformations. Terms that
do not use an input stream’s state at all, such as Mode2 above, are unproblematic; their
shape is complete, they are not affected by the subsequent transformations. For terms
that do use input stream’s state variables we need to check that they get substituted for
a constructor term that is one of the producer’s state shapes. There are two possibilities,
both illustrated by the Mode1 result above: a new state variable (e.g. s ′a) obtained from
using an input stream’s stepper function, or alternatively an unmodified state variable
(e.g. sb). The first case is covered by the case-of-case transformation: the new state
variable will be substituted for a state term obtained as a result of the input stream’s
stepper function which necessarily uses one of that stream’s state shapes. The second
case is covered by the specialisation transformation: the state variable is bound by the
pattern for the transformer’s state shape; after substitution and case reduction this state
variable will be bound to the appropriate component of the overall state shape.

For the second property, consider that when generating each specialised clause, we
substitute the state shape pattern – considered now as an applicative term of constructors
and bound variables – into the body of the original stepper function. Despite the fact
that we are inserting extra constructor terms, this does not increase allocations. To see
that this is the case, consider where such constructor terms can appear: either in the
scrutinee position of a case expression or in the new state term for Skip or Yield results.
Constructors appearing in a scrutinee position can be reduced giving rise to subterms
appearing in another scrutinee positions or the new state term of the result. After all
the case reduction is performed then the extra constructors appear only in the new state
term of the result. Constructors representing state shapes that appear in state term of
the result are exactly those constructors that we promise to eliminate (see Sections 1.4.3
and 4.3.4). Thus adding such constructors does not increase allocations because they
will eventually be eliminated.

Reestablishing the producer conditions

We must now check that we can satisfy all the producer conditions.

Condition 1 (about the the top level syntactic form): We dealt with this condition in
the early part of this section.

Condition 2 (about the the top level form of transformers): This applies only to
transformers. Having combined a transformer with one or more producers we are
left with a producer.
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Condition 3 (that stepper functions are trees of case expressions): The specialisation
transformation gives a new stepper with simple top-level pattern matching which
in turn desugars into a tree of case expressions.

Note that this condition holds even if we do not use the specialisation transformation.
The original transformer’s stepper function is a tree of case expressions. Substituting
the stepper function of input producer streams does not affect this. Applying the
generalised case-of-case transform preserves the tree form, indeed it gives us a
bigger case tree. See Section 4.5.7 for details.

Condition 4 (about strong state shape matching): As described previously, by con-
struction, the stepper function obtained from the specialisation transformation
matches all the state shapes.

Condition 5 (about what scrutinee terms are allowed in stepper function case expression
trees): For this condition we note there are no remaining uses of input stream
stepper functions – all occurrences of nextx sx have been substituted for – thus all
scrutinee terms fall into the second permissible category: arbitrary terms that does
not use any stream stepper function.

Condition 6 (that result state terms are state shapes): This condition requires that the
leaves of the case tree be Step terms and that for Skip and Yield the new state be
a term matching one of the stream’s state shapes. It is clear that the leaf terms of
the case expression tree are Step terms because it is true of the original transformer
and the the case-of-case and specialisation transformations only apply substitutions
to the leaf terms – the structure of the leaf terms is not affected.

For the second part, as described in the previous section, after applying state shape
specialisation, the state new terms for Skip and Yield match one of the state shapes
of the new stream.

Condition 7 (about the correct handling of Skip by transformers): This applies only
to transformers.

Condition 8 (about the use of stepper functions in transformers): This applies only to
transformers.

Condition 9 (that the initial stream state is a state shape): The term for the initial
state of the transformer is defined using the initial state variables of the input
stream producers. The new initial state term is that of the transformer but with
the terms from the producers substituted in. Since the initial state term of the
transformer and of the producers match one of their respective state shapes then
their composition matches one of state shapes of the new stream.

4.5.6 Revisiting the fixpoint problem

Recall the problem we encountered in Chapter 1 with fixpoints getting in the way of the
case-of-case transformation. It is interesting to see how the producer conditions that
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we have defined exclude the problematic cases. In particular for the filter s function,
in Chapter 1 we initially tried writing the stepper function in the following way using
recursion

nextfilter s = case next0 s of
Done → Done
Yield x s ′ | p x → Yield x s ′

| otherwise → nextfilter s
′

This wraps a fixpoint around the whole case expression. This use of recursion is excluded
by condition 6 that the leaves of the case expression tree be Step constructors and nothing
else.

Another alternative way of writing the filter s stepper function would be to use a local
fixpoint rather that wrapping the fixpoint around the whole case expression tree.

nextfilter s = case force next0 s of
Nothing → Done
Just (x , s ′)→ Yield x s ′

where
force f s = case f s of

Done → Nothing
Yield x s ′ | p x → Just (x , s ′)

| otherwise → force f s ′

This use of recursion is excluded by condition 5 that in transformers’ stepper functions,
the case expression scrutinee terms be either an application of an input stream’s stepper
function or another term that does not involve any stream stepper function.

These recursion constraints are motivated by the fact that we unfold stepper functions
into the scrutinee positions of other stepper functions.

next outer s = case next inner s of
. . .

next inner s = case . . .

It is essential for the case-of-case transformation that in this situation, the inner case
expression is not wrapped in any fixpoint.

next outer s = case (case . . . ) of
. . .

That requires both that the stepper function we unfold does not come wrapped in a
fixpoint

next inner s = fix (λf → case . . . )

and also that the scrutinee term does not wrap a fixpoint around the stepper function

next outer s = case fix (λf → . . . next inner s . . .) of
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4.5.7 The general case-of-case transformation

It should again be noted that properly speaking, what we typically refer to as the
case-of-case transformation actually consists of the combination of the case-of-case
transformation followed by case reduction. The general case-of-case transformation is
then simply repeated application of the case-of-case transformation followed eventually
by case reduction.

The general case we must deal with is a case expression where the scrutinee term is not
simply a single case expression with Step terms immediately in each branch, but where
the inner term is a whole tree of case expressions with Step terms in the leaves.

Consider, as an example, a stream producer constructed using filter s . This gives us a
stepper function that consists of multiple case expressions in a tree

filter s even (enumFromTos 0 9)
=
Stream nextfilter n
where
nextfilter n = case n 6 m of

True → case even n of
True → Yield n (n + 1)
False → Skip (n + 1)

False → Done

If we now apply an additional stream transformer (e.g. maps f ) then it gives us a more
complicated case-of-case example where the scrutinee term is a tree of case expressions

case (case n 6 m of
True → case even n of

True → Yield n (n + 1)
False → Skip (n + 1)

False → Done)
of
Done → . . .
Skip s ′ → . . .
Yield x s ′ → . . .

This general case is actually no harder than the simple case outlined previously. It
consists of the same two basic transformations:

1. pushing one case expression through an inner one (Santos, 1995, Section 3.5.2);

2. reducing a case of a known constructor (Santos, 1995, Section 3.3.1).

Where the inner term is a tree we simply have to apply the first transformation multiple
times. We push the outer case down each path of the inner tree of case expressions and
use case reduction when we reach the leaves.
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For example, the intermediate step in this example is

case n 6 m of
True → case (case even n of

True → Yield n (n + 1)
False → Skip (n + 1))

of
Done → . . .
Skip s ′ → . . .
Yield x s ′ → . . .

False → . . .

Here we have pushed the outer case down one level. Repeating this one more time and
using case reduction will complete the process.

Though we usually gloss over the presence of local definitions in let expressions, it is
clear we can do so because we can simply float a let from a case scrutinee (Santos, 1995,
Section 3.4.3).

4.5.8 The possibility of duplication

In general, the case-of-case transformation can duplicate code. This happens when the
inner case expression produces the same constructor in multiple branches.

case (case e of
A→ C a
B → C b
. . .)

of
C x → ⟨exp⟩

=
case e of
A → ⟨exp⟩[x := a ]
B → ⟨exp⟩[x := b ]
. . .

The term in the corresponding branch of the outer case expression is duplicated for each
occurrence of the constructor as a result in the inner case expression.

In stepper functions this duplication can happen if Done or Yield is used multiple times
as a result. The constraints on how Skip is handled makes it benign for producers to
skip in multiple places. Multiple uses of Yield will in general lead to duplication of code;
the code in the consumer that handles Yield must be duplicated for each occurrence of
Yield in the producer. In principle the same applies for Done, though the way consumers
typically handle Done makes it less problematic in practice.
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The usual solution (Santos, 1995, Section 3.5.2) is to make a join point so that there is
no duplication.

case e of
A → join a
B → join b

where
join x = ⟨exp⟩

Unfortunately we cannot use this solution for stream stepper functions as we have defined
them. Doing so would destroy the property that the stepper functions are a tree of case
expressions.

The canonical example of a stream producer that uses Yield in two places is append s .
Consider for example its use in this stream producer

append s (enumFromTos 0 9) (enumFromTos 10 19)

After transformer/producer fusion the stepper function is as follows

nextappend (Left (n, n ′)) = case n 6 9 of
True → Yield n (Left (n + 1, n ′))
False → Skip (Right n ′)

nextappend (Right n ′) = case n ′ 6 19 of
True → Yield n ′ (Right (n ′ + 1))
False → Done

To illustrate the duplication let us apply a further stream transformer, filter s even. The
fused stepper function becomes

nextappend (Left (n, n ′)) = case n 6 9 of
True → case even n of

True → Yield n (Left (n + 1, n ′))
False → Skip (Left (n + 1, n ′))

False → Skip (Right n ′)

nextappend (Right n ′) = case n ′ 6 19 of
True → case even n ′ of

True → Yield n ′ (Right (n ′ + 1))
False → Skip (Right (n ′ + 1))

False → Done

Note that the code for the in the Yield case of filter s stepper function has had to be
duplicated into both modes of the append s stepper function.

We might imagine relaxing our constraints to allow join points. Instead of a tree of
case expressions we would instead effectively have a directed acyclic graph, or to put it
another way, a tree with shared – parametrised – subtrees.
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In the above filter s/append s example it would look like

nextappend (Left (n, n ′)) = case n 6 9 of
True → join n (Left (n + 1, n ′))
False → Skip (Right n ′)

nextappend (Right n ′) = case n ′ 6 19 of
True → join n ′ (Right (n ′ + 1))
False → Done

join n s ′ = case even n of
True → Yield n s ′

False → Skip s ′

Note that the target mode is not manifestly identified, instead the mode is passed as a
parameter to the join point. While this generalisation may work for transformer/producer
fusion it is not at all clear that it would allow effective consumer/producer fusion since,
as we will see in Section 4.6.5, this relies on statically identifying transitions between
stream modes.

Not only can we get duplication due to case-of-case but we will also duplicate code if a
transformer pulls from the same input stream in multiple places. In this situation the
producer’s step function must be unfolded for each occurrence.

These two kinds of duplication lead us to the guideline that stream producers should
aim to yield in only one place and that transformers should pull from each input stream
in one place only. It should be emphasised that both kinds of duplication relate only to
code, not to runtime allocations. Thus it really is a guideline and not a constraint, as
the allocation accounting is not affected.

4.6 Stream consumer/producer fusion

Stream consumer/producer fusion is the transformation whereby the application of a
single stream consumer to a single stream producer is fused to give a collection of mutually
recursive functions. The transformation consists of two phases. The first phase is very
similar to stream transformer/producer fusion in that it eliminates Step constructors by
using the case-of-case transformation. The second phase uses call pattern specialisation
(Peyton Jones, 2007) to eliminate those data constructors in the stream state that are
used to represent the static state shapes.

This section contributes another part of the argument of Section 4.3.3: we will argue that,
subject to certain constraints on the consumer, the transformation is always applicable.
Section 4.7.10 covers the argument that the transformation reduces allocations. We will
start with an example to illustrate the transformation.
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4.6.1 A simple example

In the overview in Section 4.3.2 we used the following example

sums (zipWiths (×) (enumFromTos 0 9) (enumFromTos 10 19))

After the stream transformer/producer fusion, this example had been reduced to sums

applied to a single, somewhat complex, stream producer

sums (zipWiths (×) (enumFromTos 0 9) (enumFromTos 10 19))
=
sums (Stream next (0, 10,Nothing))
where
next (n,m,Nothing) | n 6 9 = Skip (n + 1,m, Just n)

| otherwise = Done

next (n ′,m, Just n) | m 6 19 = Yield (n ×m) (n ′,m + 1,Nothing)
| otherwise = Done

We are now in a position to apply stream consumer/producer fusion between the stream
consumer sums and the producer Stream next (0, 10,Nothing).

First phase: combining consumers with producers

A preliminary step is to unfold the definition of sums . Recall the definition of sums

sums (Stream next s) = go 0 s
where
go a s = case next s of

Done → a
Skip s ′ → go a s ′

Yield x s ′ → go (a + x ) s ′

Since the top level of sums matches directly on a Stream constructor and the top level
of a stream producer is a Stream constructor then we can unfold sums to give just an
application of the worker function go

sums (Stream next (0, 10,Nothing))
=
go 0 (0, 10,Nothing)
where
go a s = case next s of

Done → a
Skip s ′ → go a s ′

Yield x s ′ → go (a + x ) s ′

next (n,m,Nothing) | n 6 9 = Skip (n + 1,m, Just n)
| otherwise = Done

next (n ′,m, Just n) | m 6 19 = Yield (n ×m) (n ′,m + 1,Nothing)
| otherwise = Done
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This gets us to the key part of the first phase: the part where we apply the case-of-case
transformation. The go worker function scrutinises an application of the stepper function.
The stepper function of course satisfies the various producer constraints. We can therefore
unfold next in the scrutinee position and apply the general case-of-case transformation.
This leaves us with

go 0 (0, 10,Nothing)
where
go a (n,m,Nothing) | n 6 9 = go a (n + 1,m, Just n)

| otherwise = a

go a (n ′,m, Just n) | m 6 19 = go (a + n ×m) (n ′,m + 1,Nothing)
| otherwise = a

At this point we have eliminated all the Step constructors, however we are still left with
the various data constructors used to represent the stream state shapes. In this example
each recursive call of go allocates two data constructors: the constructor for the 3-tuple
and a Just or Nothing constructor.

Second phase: optimising stream consumption

The second phase of the transformation eliminates these remaining data constructors.
We make versions of the function go that are specialised to the two patterns of the stream
state argument, that is the patterns ( , ,Nothing) and ( , , Just ). We will call these
specialised versions go Nothing and go Just respectively. The top level call of go and all
calls in the body are replaced by calls to the appropriate specialised version. This leaves
us with

go Nothing 0 0 10
where
go Nothing a n m | n 6 9 = go Just a (n + 1) m n

| otherwise = a

go Just a n ′ m n | m 6 19 = go Nothing (a + n ×m) n ′ (m + 1)
| otherwise = a

We now have a pair of mutually recursive functions and there are no remaining allocations
of constructors used to represent the static state shapes. The dynamic parts of the
stream state remain as data parameters passed between the recursive functions. The
same pattern is repeated in the general case: the transitions between the static state
shapes are compiled into a set of mutually recursive functions, while the variable parts
of the state become parameters passed between the functions.

Note that while the allocations for the dynamic parts of the stream state remain, all
these allocations are also present in the list version. In comparing with the list version
we only have to eliminate the list data constructors while keeping other allocations the
same.
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4.6.2 Call pattern specialisation

Call pattern specialisation (Peyton Jones, 2007) is a transformation that can optimise
programs by removing redundant pattern matching and/or allocations. It is a form of
function specialisation and so involves making specialised copies of functions. In general,
function specialisation involves restricting a function to a particular value or range of
values for some argument and then taking advantage of the extra static information that
is available based on the restricted range of inputs. For call pattern specialisation, the
way the range of values is restricted is that the values always match a particular pattern
of data constructors, a so-called call pattern.

For example if we have a function f with an argument of type Maybe a

f ::Maybe a → . . .
f x = ⟨body⟩

we could choose to make a version of this function specialised to the call pattern Just y .

f Just :: a → . . .
f Just y = ⟨body⟩[x := Just y ]

The relationship between the original general function f and the specialised version
f Just is simply

f (Just y) = f Just y

The opportunity for optimisation is when the body of the function does case analysis on
the specialised argument and matches on the special call pattern. The case analysis can
be anywhere in the body of the function, it does not have to be at the top level. For the
sake of a simple example however, suppose the body of f is

f ::Maybe a → . . .
f x = case x of

Nothing → ⟨body nothing⟩
Just a → ⟨body just⟩

With this example the specialised version f Just is

f Just :: a → . . .
f Just y = (case x of

Nothing → ⟨body nothing⟩
Just a → ⟨body just⟩ )[x := Just y ]

The result of the case analysis becomes known statically and we can reduce the case of
the known constructor.

f Just y = ⟨body just⟩[a := y ]

Of course the specialisation is only useful if there are any calls of f where it is known
statically that the argument matches the special call pattern and thus where the call to
the general version can be replaced with a call of the special version.
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Much of the detail of call pattern specialisation is concerned with deciding which
specialisations are likely to be profitable. We will cover the detailed conditions shortly.
The basic idea is to identify that we make calls with statically known patterns and that
those patterns are also matched upon somewhere in the body of the function. We need
both elements for specialisation to be profitable. Call pattern specialisation limits the
scope in which we look for call instances with static patterns to recursive calls, either
directly recursive or mutually recursive. The rationale for limiting the scope is that the
analysis becomes local which is cheaper and simpler and secondly the greatest benefit is
typically for recursive calls because they correspond to loops.

The general notation for a call pattern is [v1, . . . , vm ] ◃ [p1, . . . , pn ]. For a function with
n arguments it consists of list of n patterns p1, . . . , pn and a set v1, . . . , vm of pattern
variables that occur in the patterns. In the previous example we had the call pattern
Just y which we would write in this notation as [y ] ◃ [Just y ].

Having identified the call patterns, specialisation proceeded by defining specialised
versions of the recursive function. For each call pattern, a specialised function is obtained
by abstracting over the pattern variables and taking the original function body with the
list of patterns substituted in place of the original function arguments.

g x1 . . . xn = ⟨e⟩
g ′ v1 . . . vm = ⟨e⟩[x1 := p1, . . . , xn := pn ]

In the above example, suppose we identify [y ]◃ [Just y ] and [ ]◃ [Nothing ] as call patterns
for which it is worth specialising. The first call pattern has one pattern variable y while
the second has none. We obtain the specialised definitions by abstracting over the pattern
variables and substituting the appropriate pattern into the body

f Just y = ⟨body⟩[x := Just y ]
f Nothing = ⟨body⟩[x := Nothing ]

Specialisation continues by applying standard optimisations such as case reduction in
the bodies of these new functions.

The last phase is to make use of the specialised functions. We have an equational
relationship between each specialised version and the original.

f (Just y) = f Just y
f Nothing = f Nothing

These equations are then used as rewrite rules, in a left to right direction. They should
be used everywhere in the program where the function is in scope. Thus all call instances
that use the identified static call patterns will be rewritten to be a call to the appropriate
specialised function.

Call pattern specialisation is a general purpose optimisation. That is, it is useful in a
fairly wide range of programs. For stream fusion we use it in a rather special-purpose
way and the degree of improvement is rather dramatic. In particular when we apply call
pattern specialisation to the worker function of a stream consumer, we aim to rewrite all
calls of the worker function to one of the specialised versions so that the original general
version becomes dead code and can be discarded.
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Call pattern specialisation preconditions

The correctness of call pattern specialisation does not depend on the choice of call
patterns. We have a choice for the precise set of conditions we use to decide which call
patterns to specialise on. Peyton Jones (2007, Section 3.3) gives a set of “heuristics”
which are tuned to work well in a wide range of programs, balancing the benefits of
specialisation with the costs of code duplication. Note that if we commit to using the
call pattern specialisation system as described then we must treat these heuristics as
conditions.

The conditions Peyton Jones sets out are as follows; for a function f and a call instance
f e1 . . . en to be specialisable under the call pattern specialisation system:

H1 The function f is bound by a definition of the form

f = λx1 . . . xa → e

That is, the lambdas are explicit, and the function has arity a > 0.

H2 The right hand side e is “sufficiently small”.

We rely on a modification to omit this condition, see below for details.

H3 The function f is recursive, and the specialisable call appears in its right-hand side.

This is the basic version of the condition. Peyton Jones (2007, Section 4.4) extends
this to allow a recursive group of functions and to allow specialisable calls in the
body of any function in the group.

H4 All f ’s arguments are supplied in the call; that is n > a.

H5 At least one of the arguments ei is a constructor application.

This is the basic version of the condition. Peyton Jones (2007, Section 4.2) describes
an extension which allows specialising on nested structure in the call pattern. With
this extension, the argument ei may be nested constructor applications. In addition
there is an extension which allows ei to be a variable bound to a constructor
application (Peyton Jones, 2007, Section 4.1).

H6 That argument is case-analysed somewhere in the body of f .

With the nested structure extension, then correspondingly f must case-analyse the
full nested structure somewhere in the body.

Condition H2 is appropriate when specialisation is used as a general purpose optimisation,
however it is problematic for stream fusion. Any upper limit will break the universality of
our optimisation argument. In particular it would prevent the elimination of the stream
state shape constructors in cases where the producer stepper function is large, e.g. due
to composing together several stream transformers.

Our optimisation argument therefore relies on a modification of call pattern specialisation
to omit this condition. One practical solution may be to annotate the consumer worker
functions with a compiler pragma to remove the limit for just those functions.
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Additional notes

Peyton Jones (2007, Section 6.2, 6.3) mentions two areas of further work that are relevant
to stream fusion. Firstly that specialising on function arguments (rather than constructor
arguments) is possible but tricky and secondly that the algorithm cannot specialise
functions where recursive call patterns are via a join point.

Specialising on function arguments is one possible approach to optimising concatMap.
Recall that our optimisation arguments in this chapter do not extend to higher order
stream inputs such as in concatMap.

Recall from Section 4.5.8 that we do not allow stream stepper functions to use join points
to share construction of Step results between multiple branches. The reason for this
limitation is now clear: call pattern specialisation cannot handle this form.

4.6.3 Stream consumer constraints

We impose some constraints on stream consumers. As with the constraints on stream
producers and transformers, the purpose of most of the constraints is to ensure that the
various transformations can be performed successfully. There are additional constraints
relating to the allocation accounting argument and to the correct handling of Skip.

As before, we do not attempt to find constraints that are both necessary and sufficient.
The aim is to specify relatively simple, sufficient, constraints that let us write most
common stream consumers. The guide for establishing sufficient constraints is the details
of the transformation; by looking at what is needed at each stage of the transformation
we aim to find simple constraints that cover all the needs. It is likely that spending more
effort on this analysis process would lead us to find more general constraints or more
general versions of the transformations.

We could have defined stream consumer/producer fusion so as to allow consumers that
consume multiple streams, however for the sake of simplicity, for the present argument we
restrict our attention to functions that consume a single stream. Consuming only a single
stream does not appear to be a significant practical limitation; most examples where
we wish to consume multiple streams can be handled by using a stream transformer to
combine multiple streams into a single stream. Should this prove to be a significant
limitation, it seems likely that the argument could be generalised to cover consuming
multiple streams.

Before describing the constraints we impose, we will first review what is needed for each
stage of the transformation.

• At the top level we need to be able to unfold a stream consumer to obtain a case
expression that matches a Stream constructor.

• We need to be able to apply the case-of-case transformation everywhere the stream
stepper function is applied.
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• We need worker functions to satisfy the conditions for call pattern specialisation.
In particular we need to be able to specialise worker functions on the stream state
shapes and all calls to worker functions need to be able to be resolved to one of
the specialised versions.

• We need the consumer to handle Skip correctly.

• We need the consumer to not duplicate work and allocations performed by the
stream producer.

Top level unfolding

Consumer condition 1. At the top level we need to be able to unfold a stream consumer
function to get a case expression that matches a Stream constructor. This is easy to
guarantee if we stipulate that syntactically, the top level of a stream consumer takes one
of the following forms

f x a = case a of Stream next s → . . .
where . . .

or

f x = h (. . .)
where . . .

Where h is some existing stream consumer. That is, at the top level we allow any
mixture of lambda abstraction and let binding (or equivalently, where clauses). The
function body must either match on the input stream to extract the stepper function
and initial state, or alternatively it may directly call another stream consumer. The
latter alternative allows a very limited degree of abstraction, for example it allows us
to define sums in terms of foldl s . We have the usual requirement that the collection of
stream consumers is finite, that all definitions are available and that where consumers
are defined in terms of other consumers, that the definitions do not form cycles.

Case-of-case

Consumer condition 2. Everywhere that the stream stepper function is called, we
need to be able to apply the case-of-case transformation so as to eliminate the Step
constructors. The preconditions for the case-of-case transformation are simple and
syntactic (see Section 4.5.7). We can guarantee them if we stipulate that the only
permitted use of the stream stepper function is its application to the stream state, as
the scrutinee term of a case expression.

case next s of . . .

The case expression must match (and must only match) on all three Step constructors.
Note therefore that the result of the stream stepper function may not be memoised or
passed as a parameter to any function.
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Static call patterns

The aim is to specialise worker functions on a stream state parameter, for each of the
static state shapes of the stream producer. To be able to apply call pattern specialisation,
we need the relevant parts of the stream consumer to satisfy the call pattern conditions
set out in Section 4.6.2.

Recall that the basic version of condition H3 states that candidate functions for spe-
cialisation be directly recursive, while the extended version allows recursive groups of
functions. We take advantage of this extension to allow stream consumers to use several
mutually recursive worker functions. Some consumers such as foldr1 are most naturally
expressed using multiple worker functions.

Consumer condition 3. Worker functions may have any number of parameters, of
which one must be the stream state. The stream state parameter must be accepted via a
top-level lambda. For simplicity we stipulate that the stream state must be an individual
parameter to a worker function, rather than being embedded in any other data structure
passed to the worker function.

Consumer condition 4. Somewhere within the body, a worker function must scrutinise
the result of the stepper function applied to the stream state parameter.

Consumer condition 5. At all worker function call sites, the function must be applied
to a stream state variable: either the initial stream state, the input stream state parameter
or a new state obtained from the stepper function. This rules out applying any functions
to the stream state before calling a worker function. Worker functions do not otherwise
need to be fully applied, it is only the the stream state parameter that is essential.

Input skips

Independent of the need to optimise the composition of stream consumers with stream
producers, we need to ensure that consumers treat Skip correctly. Recall from Chapter 3
that stream consumers (and transformers) must be oblivious to skips. It is straightforward
to find a syntactic constraint that ensures that consumers are oblivious to skips.

Consumer condition 6. As stated above, the result of the stream stepper function
is scrutinised within the body of each worker function. The intention is that when the
result is Skip that we ‘try again’ but with the updated stream state. The most obvious
constraint to achieve this is to require that the result in the Skip branch be a self-recursive
call of the worker function with the same input parameters but with the new stream
state parameter. This constraint is only effective however when the case expression itself
is in a tail call position, otherwise the result could still be affected by skips. The simplest
solution therefore is simply to require that case expressions that scrutinise the result of
the stepper function should appear in a tail call position within the body of the worker
function.
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Note that this constraint does not require that all recursive calls of the worker function
be tail recursive. Consider for example foldr s

foldr s f z (Stream next s) = go s
where
go s = case next s of

Done → z
Skip s ′ → go s ′

Yield x s ′ → f x (go s ′)

The case expression is in a tail call position. In the Skip branch the recursive call is tail
recursive but the one in the Yield branch is not.

Note that this constraint has the consequence that all worker functions are necessarily
directly self-recursive, even those that consume no more than the first element from a
stream.

Consumer condition 7. Since input streams can skip any number of times we cannot
afford to spend any allocations in the case that an input stream skips, otherwise those
allocations could be repeated an unbounded number of times. We require therefore that
case expressions that scrutinise the result of the stepper function do so in a context that
does no allocation.

Effectively this means the top level of worker functions can only be case expressions that
pattern-match input parameters. Scrutinising the result of the stepper function in an
applicative term would not be tail recursive while a let expression may involve allocation.
If nested case expressions are used then the scrutinee terms themselves must not involve
allocations.

No stream state duplication

For the allocation accounting argument we need to make sure we do not write consumers
that lose sharing. Loss of sharing may lead to unbounded duplication of work and of
allocations. We will revisit this issue in Section 4.7.11.

When consuming an ordinary list data structure is it possible to inspect the same list
tail multiple times. Whatever work was required to calculate the list is done only once
irrespective of how many passes are made over the same list. The same is not true for
streams. The unfolding of a stream is not memoised or materialised into an in-memory
data structure.

Consumer condition 8. To prevent a stream consumer repeating work done by the
producer we require that each stream state is passed to the stepper function at most
once during any evaluation of a stream consumer. This means the stream state must be
used linearly, though stream states may be discarded. For example it is possible to use
case next s of multiple times in different branches of a worker function but not in two
terms that both contribute to the result.
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Consumer condition 9. This leads us to further simplifications, given that the stream
state cannot be reused then there is little point in storing or manipulating the stream
state. Thus to simplify later arguments we stipulate that the stream state is never stored
in any data structure or passed to any function other than a worker function. Similarly,
we require each worker function take exactly one stream state parameter.

Note that there is no limitation on storing and sharing stream elements, only on the
stream state itself.

Summary grammar

We can approximate the syntactic conditions with the following grammar. There are
some additional side condition noted below.

⟨good consumer⟩ ::= f = ⟨top⟩
⟨top⟩ ::= λa → ⟨top⟩

| let . . . in ⟨top⟩
| h {⟨expr⟩}
| case a of Stream next s →

let go0 s [a b . . . ] = ⟨worker top⟩
go1 s [a b . . . ] = ⟨worker top⟩
. . .

in go0 s

⟨worker top⟩ ::= case next s of
Done → ⟨worker result⟩
Skip s ′ → gox s ′

Yield a s ′ → ⟨worker result⟩
| case a of

. . .→ ⟨worker top⟩

. . .
| ⟨worker result⟩

⟨worker result⟩ ::= a
| λa → ⟨worker result⟩
| ⟨worker result⟩ ⟨worker result⟩
| let . . . in ⟨worker result⟩
| case ⟨worker result⟩ of

. . .→ ⟨worker result⟩

. . .
| ⟨worker call⟩

⟨worker call⟩ ::= gox s {⟨expr⟩}
| gox s ′ {⟨expr⟩}

There are a number of side conditions:

• In ⟨top⟩, h must refer to another good stream consumer.
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• In ⟨worker top⟩, the gox s ′ must be the same gox function that the expression
appears in. That is, it is a self-recursive call.

• In ⟨worker result⟩ expressions, only one ⟨worker call⟩ is allowed anywhere within
the expression.

4.6.4 Combining consumers with producers

The transformation to combine stream consumers with stream producers is almost
identical to that described in Section 4.5.5 for combining stream transformers with
stream producers. The argument for why the transformation is always possible is also
near identical, relying on the syntactic constraints on consumers and producers.

The general case we consider is a stream consumer applied to a stream producer.

consumer (producer . . .)

We can assume that the stream consumer and producer satisfy the respective constraints.
Note that we never have to deal with a stream consumer that is partially applied in
its stream argument, or applied to a stream term that is an abstracted variable (see
Sections 4.2.3 and 4.3.1).

Top level unfolding

The first step is to unfold the stream producer to expose a Stream constructor and
to unfold the stream consumer to expose a case expression that matches on a Stream
constructor. This step relies on the constraints on the top-level syntactic structure
of stream producers and consumers. Previously, in Section 4.5.5 we argued that the
constraints on producers ensure that a finite sequence of unfolding producer definitions
always exposes a Stream constructor.

producer . . .

= { unfold the producer }
let nexta s = . . .

. . .
in Stream nexta ⟨initial⟩

The Stream constructor may be wrapped in several layers of let expressions that supply
local function definitions, including the stepper function.

The argument for consumers is analogous to the previous argument about transformers.
In particular the body of the consumer is either is directly in the form we need – a
case expression that matches a Stream constructor – or it is a call to another consumer
(consumer condition 1). Thus a finite sequence of unfoldings gives us the case expression,
possibly wrapped in layers of let expressions supplying local definitions.
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consumer a

= { unfold the consumer }
let worker s = ⟨body⟩
in case a of Stream next s → ⟨top⟩

Note that the consumer will always be fully applied to its stream argument, but it is not
necessary for it to be fully applied to all other arguments.

When we unfold the consumer we get the stream producer term in the scrutinee position
of the top level case expression.

let worker s = ⟨body⟩
in case (let nexta s = . . .

. . .
in Stream nexta ⟨initial⟩)

of Stream next s → ⟨top⟩
The local let definitions for the producer can be floated outwards which allows us to
reduce the top level case expression of the consumer since we have a case of a known
constructor.

let worker s = ⟨body⟩[next := nexta ]
nexta s = . . .
. . .

in ⟨top⟩[s := ⟨initial⟩ ]
We are left with the body term of the stream consumer’s case expression but with
the stream producer’s terms and/or local definitions for the initial state and stepper
function. In particular, the local definition for the stepper function is now available in
the consumer’s worker function.

Applying case-of-case

The next step is to apply the case-of-case optimisation in the body of the consumer’s
worker functions so as to eliminate all the Step constructors. We rely on consumer
constraint 2 that the only occurrences of the input stepper function are applications to a
stream state in the scrutinee position of a case expression. Additionally, the previous
step of unfolding and reducing the consumer and producer has given us a local definition
for the input stepper function. Finally, stream producer conditions 3 and 6 guarantee
that the stepper function is a tree of case expressions that return Step constructors.
These conditions guarantee that we can unfold each occurrence of the stepper function
and apply the general case-of-case transformation (Section 4.5.7) to eliminate the Step
constructors used in the result of the stepper function.

This much is analogous to the transformation and argument in the stream trans-
former/producer situation. One difference is that we do not need to re-establish conditions
on a new stepper function, since unlike transformers, consumer do not produce a new
stepper function. On the other hand there are some properties of the new worker functions
that we will rely upon in the next stage when we come to apply call pattern specialisation.
We will describe the details in the next section.
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4.6.5 Optimising stream consumption

Recall the example from Section 4.6.1.

go 0 (0, 10,Nothing)
where
go a (n,m,Nothing) | n 6 9 = go a (n + 1,m, Just n)

| otherwise = a

go a (n ′,m, Just n) | m 6 19 = go (a + n ×m) (n ′,m + 1,Nothing)
| otherwise = a

This example is typical in that it uses a single worker function. At this stage of the
transformation we have one or more worker functions, each of which takes a stream state
parameter. Each worker function does at least one case analysis on the input stream
state that matches it against all the state shapes; in the above example the shapes
( , ,Nothing) and ( , , Just ). In the recursive calls to the worker functions, the term
passed as the stream state parameter is an application of data constructors that matches
one of the stream state shapes. The aim is to transform each worker function and all the
calls to the worker functions so that the data constructors used for the state shapes are
eliminated.

go Nothing 0 0 10
where
go Nothing a n m | n 6 9 = go Just a (n + 1) m n

| otherwise = a

go Just a n ′ m n | m 6 19 = go Nothing (a + n ×m) n ′ (m + 1)
| otherwise = a

One can think of the original as encoding control flow as data, and that the transformation
converts this back to ordinary control flow in the form of mutually recursive functions.

To achieve this transformation by call pattern specialisation would require that we:

1. specialise each worker function on its stream state argument;

2. specialise using all the stream state shapes as call patterns;

3. rewrite all calls to worker functions into calls to an appropriate specialised version.

As we will describe in the remainder of this section, the details are almost but not quite
as simple as this.

Why call pattern specialisation

Call pattern specialisation is not the only transformation that would be effective here.
More general techniques such as partial evaluation, or more special-purpose transfor-
mations would also likely be effective. There are good reasons to prefer call pattern
specialisation:
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• it is an existing, relatively simple and well documented transformation;

• it is a general purpose optimisation that can benefit a range of programs, which
helps to justify the effort of implementing it in a general purpose compiler;

• our previous work (Coutts et al., 2007b) demonstrates that it works in practice;

• it is preferable that the argument we present here should use the same, or a very
similar, transformation as that used in previous empirical work.

On the other hand, there are downsides to using a general purpose optimisation. The
standard heuristics for deciding which call patterns to specialise upon are tuned to work
well in a wide range of programs. In our application there are corner cases where the
standard heuristics miss some of the call patterns that we would wish to specialise on.

In the remainder of this section we will describe how the standard heuristics cover the
usual case and what corner cases they do not cover. We will also present two solutions
to cover the corner cases: one using different specialisation heuristics and one using an
additional subsequent transformation.

Note that when the stream producer uses a single trivial state shape then there is nothing
to do: there are no allocations to eliminate. It is possible to use stream fusion while
forgoing the transformation that eliminates the state shapes, but only if we have a
restriction that all stream producers and transformers use only a single state shape. We
would be restricted to simple stream functions like maps and filter s that do not make
use of multiple state shapes. This restriction was implicit in our earliest work on stream
fusion for arrays (Coutts et al., 2007a).

Properties of worker functions

Given a function that we wish to specialise, the argument to specialise it on and the set
of call patterns to specialise against, the key conditions for call pattern specialisation
involve:

1. looking at what patterns the function argument is matched against in the body of
the function;

2. looking at what call patterns are used in recursive call instances.

For a pattern to be a candidate for specialisation it must both be matched against in
the body and it must be used in a recursive call instance. With this in mind, it is worth
considering the form of the worker functions at this stage of the transformation; that
is, the stage after combining consumers with producers and applying case-of-case. In
particular we are interested in the relationship between 1) the state shapes of the stream
producer and 2) the call patterns matched in the body, and patterns used in call instances
of the worker functions.

Let us consider what happens when we combine a worker function with a stepper function
and apply the case-of-case transformation. The part of the the worker function we are
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particularly interested in is the part where it scrutinises next s. Recall that consumer
condition 4 guarantees that next s is scrutinised somewhere in the body of the worker
function. Each such occurrence has the following general form

case next s of
Done → ⟨expdone⟩
Skip s ′ → ⟨expskip⟩
Yield x s ′ → ⟨expyield⟩

The other part we are interested in is the stepper function from the stream producer.
Recall that stepper functions take the form of a tree of case expressions with Done, Skip,
or Yield terms in the leaves. For the most part we are interested only in the leaf terms of
the tree of case expressions, not in the interior nodes. Imagine a typical stepper function
of the following form. The interior nodes are elided.

case . . .of
. . .→ Skip ⟨state1⟩
. . .→ Done
. . .→ Skip ⟨state2⟩
. . .→ Skip ⟨state3⟩
. . .→ Yield ⟨val4⟩ ⟨state4⟩

In general there can be any number of Done, Skip or Yield leaf terms. Recall that
stream producer condition 6 states that in the Skip and Yield terms, the new state must
manifestly be one of the state shapes. That is, each ⟨statex ⟩ term matches one of the
producer’s state shapes.

When we combine the above two parts together and we apply the case-of-case transfor-
mation then we obtain an expression of the form

case . . .of
. . .→ ⟨expskip⟩ [s ′ := ⟨state1⟩ ]
. . .→ ⟨expdone⟩ [ ]
. . .→ ⟨expskip⟩ [s ′ := ⟨state2⟩ ]
. . .→ ⟨expskip⟩ [s ′ := ⟨state3⟩ ]
. . .→ ⟨expyield⟩ [s ′ := ⟨state4⟩, x := ⟨val4⟩ ]

That is we have the body of the stepper function but with new leaf terms. The new leaf
terms are the ⟨expdone⟩, ⟨expskip⟩, ⟨expyield⟩ expressions from the worker function with
the appropriate substitutions for the stream state and yielded value.

We can now make a couple observations about the form of the worker function at this
stage of the transformation. Consider the outline of a typical worker function

go s = case next s of
. . .
Skip s ′ → go s ′

Yield x s ′ → . . . (go s ′) . . .

After unfolding the stepper function and applying the case-of-case transformation, these
recursive call instances will all be of the form (go s ′)[s ′ := ⟨statex ⟩ ], or simply go ⟨statex ⟩.
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More generally, and more precisely, we can describe the set of these recursive call instances
that we obtain after applying case-of-case. The set is described in terms of the Cartesian
product of the set of such recursive call instances in the original worker function and the
set of ⟨statex ⟩ terms produced by the stepper function.

Property 4.6.1. Let callsyield and callsskip be the set of all recursive call instances in
the original worker function that use the new state s ′ as obtained from Yield and Skip
respectively. Let statesyield and statesskip be the set of ⟨statex ⟩ state terms that appear in
Yield and Skip results of the stepper function. For each callyield in callsyield and stateyield
in statesyield , the new worker has a recursive call ⟨callyield⟩[s ′ := ⟨stateyield⟩ ]. Similarly
for callsskip and statesskip .

Notice that the use of the Cartesian product in the description takes into account the
corner case where there are no such recursive calls or no such state terms. For example,
the stepper function may not produce a Skip term at all. In this situation there will be
no ⟨expskip⟩ leaf terms in the result. Similarly if the original worker does not contain a
recursive call that uses a new stream state obtained from Yield , then there will be no
corresponding recursive calls after the case-of-case transformation. Notice in particular
that while the original worker is required to scrutinise next s and handle the case of
Skip s ′ by recursing with the new state s ′, there is no guarantee that the stepper function
actually produces any Skip terms.

If instead of looking at the set of all state terms ⟨statex ⟩, we look just at the set of state
shapes used by the terms ⟨statex ⟩, then taking the Cartesian product gives us the set of
calls and call patterns in the new worker.

Let us now consider what patterns are matched in the body of each worker function.

Property 4.6.2. The body of each worker function matches its stream state argument
against all the state shapes used by the stream producer.

We note that that all original workers functions scrutinise next s somewhere in their
body. We note that the transformed expression contains the same tree of case expressions
as the the stepper function, albeit with different leaf terms. Finally, recall that producer
condition 4 states that the stepper function matches its input stream state against all
the stream’s state shapes. Thus the transformed expression matches s against all the
state shapes.

Applying call pattern specialisation

As stated previously, the aim is to transform the worker functions to eliminate the data
constructors used to represent the stream state shapes. Achieving this by specialisation
would require that we 1) specialise each worker function on its stream state parameter,
2) using all the stream state shapes as call patterns and 3) that we rewrite all calls to
worker functions to be calls to an appropriate specialised version.

For 1) and 2) we would need each worker function to satisfy the conditions for call pattern
specialisation on all the stream state shapes. For 3) we need all calls to worker functions
to use a call pattern that matches one of stream state shapes.
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Let us assume for the time being that we can select all the stream state shapes as the call
patterns on which to specialise each worker function. Let us see how the transformation
proceeds under this assumption. We will return to the issue of whether and to what
extent we can justify the assumption.

Specialisation proceeds by making copies of the worker functions, one copy for each
worker function for each state shape. In place of the stream parameter, each one takes
the variables in the state shape as extra parameters. The body of each copy has the
state parameter substituted for the state shape pattern.

The next stage is to rewrite calls of the original worker functions into calls to the
appropriate specialised version. There are three classes of call instance to consider.
We know from condition 5 that there were three classes at the previous stage of the
transformation and although the call instances are affected by the case-of-case transform,
the classes of call remain distinct. Condition 5 tells us that the possible kinds of calls to
a worker function are:

1. top-level calls : calls to a worker function in the top level of the consumer;

2. recursive calls, same state: recursive calls in the body of a worker function that
use the stream state passed into the worker function;

3. recursive calls, new state: recursive calls in the body of a worker function that use
the new state obtained from next , from either a Skip or a Yield .

All three classes are illustrated in the following example stream consumer.

f (Stream next s) = go s a0
where
go s a | p a = . . . (go s a ′) . . .

| otherwise = case next s of
Done → . . .
Skip s ′ → go s ′ a
Yield x s ′ → . . . (go s ′ a ′) . . .

For top-level calls we note that producer condition 9 requires that the initial stream
state term must manifestly be one of the state shapes. Consumer condition 5 requires
that top level worker function calls use the initial stream state variable directly. Once
the stream consumer is combined with the stream producer then the consumer’s initial
stream state variable is bound to the producer’s initial stream state term – which itself
matches one of the state shapes. So the top level call sites do not necessarily directly
use a term that matches a state shape, instead they may use a variable which in turn is
bound to a term matching a state shape. In this situation we rely on the extension of
call pattern specialisation for variables that have known structure (Peyton Jones, 2007,
Section 4.1). In particular this extension ensures that the top-level worker function calls
using the initial stream state variable can still be rewritten into a call to the appropriate
specialised worker function.

For recursive calls that use a new stream state we can rely on consumer condition 5. This
guarantees all such recursive calls in the worker function use a state term produced by
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the stepper function – which must therefore match a stream state shape. Thus all these
calls in the original and specialised versions of the worker functions can be rewritten to
calls to specialised versions of the worker functions.

The last case is recursive calls that use the stream state passed into the worker function.
In the specialised versions of the worker functions the state parameter used in the
recursive call has been substituted for the call pattern the worker function was specialised
on, so it trivially uses a call pattern matching a state shape. For reasons that will shortly
become clear, occurrences in the non-specialised worker functions do not need to be
considered.

Having performed the rewrites of the above calls, the non-specialised worker functions
are now dead code and can be eliminated. This is because they are no longer called from
the top level and they are not called from any of the specialised worker functions.

Overall, if we can select all state shapes as call patterns then we can rewrite all worker
function calls to calls to specialised versions. Thus all the constructors allocated for the
state shapes at all worker call sites can be eliminated.

Satisfying the conditions for call pattern specialisation

To apply specialisation in the way we desire, we would need each worker function to
satisfy all the conditions for call pattern specialisation on all the stream state shapes.

The call pattern specialisation conditions H1–H6 are set out in Section 4.6.2. The easy
conditions are H1, H2 and H4. The interesting conditions are H3, H5 and H6.

Condition H1 requires the worker functions to have lambdas at the top level, while
condition H4 requires recursive calls to the worker function to supply at least as many
arguments as there are top-level lambdas. Since we are only interested in specialising the
worker function on its stream state parameter then at a minimum, at the top level, we
require a single lambda for the state, while at call sites we require a state argument to
be supplied. We can guarantee both since by condition 3 we require worker functions to
take at least the stream state as a parameter via a top-level lambda and by condition 5
we require call sites to at least supply an argument for the state parameter. As described
previously, we omit condition H2.

For condition H5 we rely on the extension to call pattern specialisation that allows call
patterns to be nested structures. We need the extensions because stream state shapes
are compound. In particular we can end up with compound state shapes from the
composition of stream transformers.

H6 requires that the function scrutinise the argument being specialised on and match the
argument against the call patterns of interest; that is, the worker function must match
the stream state parameter against all the stream state shapes, including the full nested
structure. We established this previously with property 4.6.2.

H3 and H5 require that specialisable calls, using the call patterns of interest, must appear
in the body of the function, or another function in the same recursive binding group.
Property 4.6.1 describes the set of call instances that appear in the body of each worker
function. Recall that it defines:
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• callsyield and callsskip as the set of all recursive calls in the original worker function
that use the new state s ′ as obtained from Yield and Skip respectively.

• statesyield and statesskip as the set of state terms that appear in Yield and Skip
results of the stepper function.

• The sets of call instances that appear in the body of a worker function are defined
in terms of the products callsyield × statesyield and callsskip × statesskip .

We want these product sets to cover all the state terms, because we cannot otherwise
hope to cover all the state shapes. Thus we need the callsyield and callsskip sets to be
non-empty. The callsskip set is guaranteed to be non-empty because each worker function
must scrutinise next s and it must handle Skip s ′ by recursing with the new state s ′.

Corner cases

The above description in terms of product sets highlights why the preconditions can
usually be met and the cases where they will not be met. There are two cases in which
the above product sets may fail to cover all the stream’s state shapes:

1. The terms in the statesyield and statesskip may not cover all of the stream’s state
shapes.

2. The callsyield set may be empty.

In addition, if both statesyield and statesskip are empty – that is the stepper function only
produces Done – then although we may trivially cover all the state shapes, it will also
usually lead to a non-recursive worker function, but condition H3 requires candidate
functions to be recursive.

For the first corner case, consider the state machine view of a stream stepper function.
Each transition arrow originating at one node and pointing to another node corresponds
to the stepper function producing a Skip or Yield with a new state matching one of the
state shapes. In this view we see that the state shapes covered by the statesyield and
statesskip sets are those that have a transition arrow pointing to them. Note however
that the initial stream state is not such a transition. In the usual case, the state machine
transition graph is such that all nodes have an incoming transition from another node.
However it is possible that the initial node in the state machine is pointed to only from
the initial state and not by a node-to-node transition. This is the case for example with
conss . The state machine for conss has two nodes, an initial node and a main node.
The only transition from the initial node is to the main node. The initial stream state
identifies the initial node, however the corresponding worker function call in the consumer
appears at the top level rather than within the body of one of the worker functions. It is
thus not considered when looking for call patterns to specialise upon.

In the second corner case there are no recursive calls using an updated stream state
obtained from calling next . For example a stream consumer may look only at the first
element in a stream. It is therefore possible to miss state shapes in the transition graph
that were only reachable via a Yield transition.
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Solutions

The most direct solution is simply to change the conditions we use for deciding which
call patterns to specialise upon. Recall that the choice of call patterns is not important
for correctness (see Section 4.6.2). We can simply declare that we choose all the stream
state shapes as call patterns to specialise on. We would of course be giving up on the
stated aim of using general purpose optimisations.

The second solution is to use call pattern specialisation with the standard conditions but
to handle the remaining corner cases by the combination of a little analysis, a refinement
of the goal and some additional transformations.

Firstly, consider the second corner case where we may not be able to specialise the worker
function on state shapes that were only reachable via a Yield transition. This actually
is not a problem. We do not actually need to specialise on all the stream state shapes,
more precisely the set of patterns we specialise on needs to cover all the calls in the body
of the worker function. For example if we have head s (conss x ⟨remainder⟩) then the
worker function does not recurse in the Yield case, so there are no calls that use any of
the state shapes of the remainder of the stream.

A little further analysis should convince us that all the remaining corner cases involve
worker functions that are non-recursive. This means that although we cannot specialise,
we can use simple unfolding and reduction.

In the first corner case the situation is that the initial node in the state machine is
pointed to only from the initial state and not from a node-to-node transition. This means
the state shape of the initial node is not used as a call pattern to specialise on. Thus the
top-level worker function call that uses the initial call pattern will not be rewritten to
a call to a specialised version. All other calls to the worker function will be rewritten
however, both in the generic version and the specialised versions. Thus the generic
version will no longer be recursive and is only called from the top level.

Similarly, we already noted above that when both statesyield and statesskip are empty
then the worker function does not recurse with a new state. Depending on whether there
are other recursive calls we may or may not be able to eliminate the constructors used
for the initial stream state. This is all benign however because it is constant and does
not affect the number of constructors allocated per stream element.

4.6.6 Weaker state shape matching

Recall from the overview in Sections 4.3.2 and 4.3.3 that overall we have an inductive
argument involving repeatedly fusing transformers with producers to give a new producer
and finally taking the remaining producer and fusing it with a consumer. The argument
makes use of a set of properties about the stream producers that we have at each stage.
We have some potential for flexibility in the choice of properties and in the choice
of transformations we use to maintain the properties; the only constraint is that the
properties are strong enough at the end to ensure that the consumer/producer fusion
will work.
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As we discussed in Section 4.5.3, based on exploring simple examples we are naturally led
to try picking properties that make stream producers equivalent to the state machines of
Section 4.4, and using simple unfolding and case-of-case as the transformation to preserve
the state machine form in the transformer/producer fusion step. More complicated
examples (involving zips) exposed the problem that the case-of-case transformation on
its own is not quite enough to preserve the state machine form. We concluded from
this failure that either the properties are too strong or that the transformation is not
sufficient.

In Section 4.5.3 we pursued the simpler option of using an additional transformation
to preserve the original choice of properties. In this section we will explore the other
option: that of weakening the properties and sticking to using just the case-of-case
transformation. We are interested in this approach because it corresponds more closely
to what real implementations of stream fusion do. It seems intuitive that the case-of-case
transformation should preserve some kind of weaker property. The question is quite what
such a property should be and whether any such property is strong enough to ensure
that consumer/producer fusion will still work.

We will start our exploration by returning to the zips example and see whether the form
we are left with after the simple case-of-case transformation can still be successfully fused
with a consumer. We start with the fused stepper function after applying case-of-case.

next (sa , sb ,Nothing) = case sa of
Left n → Skip (Right (n + 1), sb , Just n)
Right n → Skip (Left (n − 1), sb , Just n)

next (s ′a , sb , Just n) = case sb of
Left m → Yield (n,m) (s ′a ,Right (m + 1),Nothing)
Right m → Yield (n,m) (s ′a ,Left (m − 1),Nothing)

Note that sa is only scrutinised in the first mode, and sb only in the second. So it is not
the case that the full structure of each state shape is matched in each of the two modes.
It is however the case that each part of the shape is matched by some mode. To put it
another way, the full shape is covered by the combination of the two modes.

Let us blindly plough ahead with consumer/producer fusion. For simplicity we will use
unstream as the consumer. Having applied unstream then after the case-of-case phase
we obtain the following worker function.

go (sa , sb ,Nothing) = case sa of
Left n → go (Right (n + 1), sb , Just n)
Right n → go (Left (n − 1), sb , Just n)

go (s ′a , sb , Just n) = case sb of
Left m → (n,m) : go (s ′a ,Right (m + 1),Nothing)
Right m → (n,m) : go (s ′a ,Left (m − 1),Nothing)
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It is now time to apply call pattern specialisation. There are four recursive call sites,
giving rise to four call patterns.

n ′, sb , n ◃ (Right n ′, sb , Just n)
n ′, sb , n ◃ (Left n ′, sb , Just n)

s ′a ,m
′ ◃ (s ′a ,Right m

′,Nothing)
s ′a ,m

′ ◃ (s ′a ,Left m ′,Nothing)

Recall that call pattern specialisation filters the call patterns with the aim of keeping
only those where specialisation is likely to be profitable. Peyton Jones (2007, Section 4.2)
describes the exact test used when dealing with patterns with nested structure. All four
patterns above do pass the test. It is worth seeing why they pass the test as it is a
somewhat subtle and fragile property.

The test involves collecting argument usage information. For an argument that is
scrutinised, the usage information records, for each possible alternative data constructor,
which of its fields are scrutinised and their usage information recursively. The usage
information is collected for the function as a whole. Peyton Jones uses the following
notation for the usage information of a function parameter. Constructora →→ [⟨field1⟩, ⟨field2⟩, . . .]

Constructor b →→ [⟨field1⟩, ⟨field2⟩, . . .]
...


In this notation there is an entry for each of the possible data constructors for the type.
For each constructor there is a list for the fields of the constructor. Each ⟨field1⟩ is either
� if that field is not used, or a further nested usage notation.

In our example it is clear that the (, , )-constructor itself is used. The third component
of the tuple is also clearly scrutinised. The first clause of next scrutinises sa which is
the first component of the tuple. The second clause of next scrutinises sb, the second
component of the tuple. Merging this information together into usage for the function as
a whole tells us that all three components of the tuple are scrutinised. Using the above
notation we write it as follows.

(, , ) →→


Left →→ [�]
Right →→ [�] ,

Left →→ [�]
Right →→ [�] ,

Just →→ [�]
Nothing →→ []




If we now use this usage information to filter the set of call patterns we identified
previously then we find that all the patterns are retained because each component of the
(, , )-tuple are scrutinised somewhere in the function body.
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We can now move on to generating specialised versions of the function. We omit the
details of the substitution. The specialisations for the four call patterns are

{ specialisation for (Right n ′, sb , Just n) }
go1 n

′ sb n = case sb of
Left m → (n,m) : go (Right n ′,Right (m + 1),Nothing)
Right m → (n,m) : go (Right n ′,Left (m − 1),Nothing)

{ specialisation for (Left n ′, sb , Just n) }
go2 n

′ sb n = case sb of
Left m → (n,m) : go (Left n ′,Right (m + 1),Nothing)
Right m → (n,m) : go (Left n ′,Left (m − 1),Nothing)

{ specialisation for (s ′a ,Right m
′,Nothing) }

go3 s
′
a m ′ = case s ′a of

Left n → go (Right (n + 1),Right m ′, Just n)
Right n → go (Left (n − 1),Right m ′, Just n)

{ specialisation for (s ′a ,Left m
′,Nothing) }

go4 s
′
a m ′ = case s ′a of

Left n → go (Right (n + 1),Left m ′, Just n)
Right n → go (Left (n − 1),Left m ′, Just n)

The interesting thing here is that the bodies of the specialised versions contain new
call patterns. In fact these new call patterns are exactly the eight state shapes that we
assigned for the fused stream producer.

We can make use of these new call patterns by using yet another extension to call
pattern specialisation. Peyton Jones (2007, Section 4.2) describes an extension where
specialisation is iterated to a fixpoint. New call patterns are collected from the bodies of
specialised functions, then the original function is specialised again with these new call
patterns.

An important property is that amongst the specialised copies, the call patterns appearing
in their bodies are always at least as specialised. This means that when we generate
the eight new specialisations, their bodies contain call patterns that refer to each other
but not to the four previous partially specialised versions. When we replace all calls to
the original version with calls to appropriate specialised versions, then the eight fully
specialised versions only call each other. The four partially specialised versions call the
fully specialised versions, but not the other way around. Since the initial call is to a fully
specialised version then this means that the original and partially specialised versions
are dead code and can be eliminated. The final result is optimal:

{ specialisation for (Right n,Right m,Nothing) }
go5 n m = go10 (n − 1) m n
...

{ specialisation for (Left n ′,Left m, Just n) }
go12 n

′ m n = (n,m) : go6 n
′ (m + 1)
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This is a very promising result. By using the specialisation fixpoint extension we have
been able to successfully fuse this producer even though it was not quite in the state
machine form.

Sadly, in general, the situation is more complex yet. Our original zips uses the internal
state type (sa , sb ,Maybe a). A more extensible style would be to use a type with one
constructor per mode.

data ZipState sa sb a = ModeA sa sb
| ModeB sa sb a

When using this stream state type, our fused stepper function would look very similar

next (ModeA sa sb) = case sa of
Left n → Skip (ModeB (Right (n + 1)) sb n)
Right n → Skip (ModeB (Left (n − 1)) sb n)

next (ModeB s ′a sb n) = case sb of
Left m → Yield (n,m) (ModeA s ′a (Right (m + 1)))
Right m → Yield (n,m) (ModeA s ′a (Left (m − 1)))

While this may appear to be merely a cosmetic change, the argument usage information
changes sufficiently to cause problems. The argument usage is now

ModeA →→

Left →→ [�]
Right →→ [�] , �



ModeB →→

�, Left →→ [�]

Right →→ [�] , �



Because the modes now have separate constructors, the fact that sa and sb are only
scrutinised in one mode is now recorded precisely in the usage information. Previously
the information from the two clauses was merged because it was the same field in each
mode. The call patterns are as follows.

n ′, sb , n ◃ (ModeB (Right n ′) sb n)
n ′, sb , n ◃ (ModeB (Left n ′) sb n)

s ′a ,m
′ ◃ (ModeA s ′a (Right m ′) Nothing)

s ′a ,m
′ ◃ (ModeA s ′a (Left m ′) Nothing)

Note that the parts of the call pattern that have nested substructure have corresponding
usage information indicating that the structure is not scrutinised. The effect is that we
do not get any specialisations at all.

This is a serious problem. It will affect many non-trivial stream transformers, particularly
transformers that have multiple input streams or that make liberal use of extra modes.
It is important for the expressiveness of stream functions that extra modes can be
introduced freely.

One possible solution might be to allow the programmer to annotate data types that
should always be considered for call pattern specialisation. It would involve a simple
modification to the step of the algorithm where argument usage information is collected:
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data constructors of an annotated data type would always be considered to be used.
With this modification to the definition of argument usage, if the ZipState type has the
specialisation annotation added then the call patterns we want would be retained and
the specialisation will work as desired. More generally the approach would be for state
shapes to only use new specially defined and suitably annotated data types – rather than
using general purpose types such as Maybe where any specialisation annotation would
affect other programs. This annotation solution may provide an adequate compromise
between the desire to use reusable general purpose optimisations and also to allow reliable
optimisation in this special case.

4.7 Accounting for allocations

This section contributes the final part of the argument of Section 4.3.3, that overall, the
sequence of transformations is an optimisation.

As mentioned in Sections 4.1.1–4.1.2, we declare a sequence of transformations to be an
optimisation if it decreases our cost measure. Our chosen cost measure is the number
of heap allocations for data constructors that are incurred in the course of program
evaluation. The approximation of considering only the number of data constructors and
not their size is largely justified; in practice the costs of allocating, using and deallocating
constructors is dominated by the constant per-constructor overheads rather than the
per-field factors.

It will be helpful to customise our cost measure to the context of functions on lists where
the most natural measure is the number of data constructors allocated per list element.
The allocations per element is independent of the list length and is often relatively easy
to read-off from the code.

We ignore allocations relating to the end of the sequence. We will also ignore the
allocation of the Stream constructor itself: it is only a single allocation for a whole
sequence. It is in any case eliminated during stream transformer/producer fusion or
stream consumer/producer fusion.

The choice of cost measure serves to highlight the result of this section: that by this cost
measure, the transformations decrease the cost by exactly one. That is, one fewer data
constructors are allocated per list element. This is as much as can be expected as lists
only use one data constructor per list element.

Note that a similar cost measure that may be useful in some circumstances is to consider
the sum of allocations involved in evaluating the first n sequence elements and define
one measure to be less than another if for all n the sum is less.

4.7.1 Relating allocations in the ordinary and fusible functions

The change in allocations involved in the application of the stream/unstream fusion rule
is simple. Tracing the change in allocations through the two later phases is also relatively
straightforward. So while it is possible to show that the transformations described lead
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to a reduction in allocations, this is not on its own a useful result. Taking specially
crafted inefficient list functions and making them less inefficient is not itself useful.
Recall that our starting point for the transformation process is good list producers and
good list consumers which are list functions that internally are implemented in terms of
stream functions. We know that, prior to any transformations, these good producers and
consumers perform more allocations than their counterpart ordinary list functions. To
make a useful optimisation claim we must take ordinary list functions as our baseline.

The difficulty then is that we need some allocation constraint that relates the fusible list
functions to ordinary their counterparts. Typically the fusible versions have a strong
resemblance to the ordinary list versions but in principle – provided that they are
semantically equivalent – they can be arbitrarily different. We need to ensure however
that they are not arbitrarily worse; stream fusion cannot save us if we write poor fusible
definitions. We know that initially the fusible versions are worse in terms of allocations,
but we must be able to put some bound on how much worse. Indeed it must be a tight
bound because we only expect to save a single allocation.

The intuition is that the only difference in allocations between the ordinary and fusible
definitions is due the representation of the sequences. That is, if we take an ordinary and
an equivalent fusible list function and we ignore the (:), Skip, Yield and the constructors
used for the static state shapes, then the remaining allocations should be identical.

Guided by this intuition, our aim is to find constraints relating ordinary and fusible
definitions which, if satisfied, ensures that stream fusion is an optimisation. Since this is a
rather backwards approach – starting with the hope that stream fusion is an optimisation
and working back to constraints that make it so – it is essential that we check the resulting
constraints against reality. In Section 4.7.5 we will use a number of common fusible list
producers and consumers to check that the allocation constraints are satisfiable.

Our strategy to find a suitable relation involves breaking down and classifying the various
allocations of the ordinary and fusible list functions. This breakdown must be sufficiently
precise to isolate the classes of allocations that are eliminated by the stream fusion
transformations.

Our method for classifying the allocations involves analysing the allocations performed
during evaluation of a term to weak head normal form (WHNF). While we do not formally
define an evaluation machine, we do assume lazy evaluation, i.e. non-strict evaluation
where shared subterms are evaluated at most once. Consider the evaluation of a term e
to a head constructor C with further terms e1, e2, . . . en in the fields of the constructor

e  (C e1 e2 . . . en)

As a specific instance, think of xs  (x : xs ′), that is evaluating a list xs to weak head
normal form with a head term x and a tail term xs ′.

Performing the evaluation e  (C e1 e2 . . . en) has the effect of allocating some number of
data constructors. We can classify these allocations by whether or not they are retained
in the result C e1 e2 . . . en , and if so, where in the result they are retained. We can
obviously identify the head constructor C itself, which, depending on the original term e,
may have been allocated during the evaluation step. We will classify the other retained
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allocations by the field in the constructor that retains them. Where an allocation is
retained by multiple fields we will account it to the leftmost field. This is an arbitrary
choice but as we shall see the reverse choice will not affect the analysis in any essential
way.

The setup for the argument is as follows: we have an arbitrary ordinary list pro-
ducer/consumer pair such that the application of the consumer to the producer is well
typed.

consumerordinary (producerordinary . . .)

We have another producer/consumer pair that are equal to the ordinary producer and
consumer but that satisfy the good list producer and good list consumer conditions.

consumer fusible (producer fusible . . .)

We will then be interested in the number of allocations involved in the following cases:

1. the ordinary list consumer/producer application;

2. the equivalent fusible consumer/producer application prior to fusion;

3. and the fusible consumer/producer application after fusion.

4.7.2 Allocations in ordinary list producers and consumers

Take the list xs that is generated by our list producer function producerordinary . We are
accounting for allocations on a per sequence-element basis so we are interested in the
allocations involved in evaluating this list to weak head normal form which gives us a
single element

xs  (x : xs ′)

By carefully analysing the list producer function we may write down an expression for
the number of allocations in this evaluation step; that is, the number of allocations per
sequence element. Consider, for example, the following contrived list producer

evensFrom n | even n = n : evensFrom (n + 1)
| otherwise = evensFrom (n + 1)

evensFrom 0
=
0 : 2 : 4 : . . .

In this example the number of allocations per sequence element is four: one for the (:)
constructor, one for the Int element itself, one for the intermediate Int value that is
constructed and discarded and one for the Int value constructed for the recursive call in
the list tail. It is clear that in the general case for a list producer, the term describing
the number of allocations per element may be rather complicated. For the most part we
will not be concerned with the detailed form of the term.
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Focusing again on the allocations involved in the evaluation to weak head normal form
xs  (x : xs ′), we break down the allocations involved into different classes following the
method outlined above. For the classes of known size we give the appropriate term and
for the others, that depend on the details of the list producer, we identify them with a
named term. We have four classes of allocations:

• (whnf cons) those involved in the evaluation  but not retained;

• (1) the single (:) constructor;

• (head cons) those retained by the head x ;

• (tail cons) and those retained by the tail xs ′.

We will require that the (:) constructor is a fresh allocation. This turns out to be an
important constraint. We will consider the effect of violating it in Section 4.7.11.

For the ordinary list consumer we do not need to do any breakdown. We simply have
a term consumecons for the number of allocations used per sequence element. Thus for
the ordinary list consumer/producer application, the total number of allocations per
sequence element is

totalordinary = whnf cons + 1 + head cons + tail cons + consumecons

4.7.3 Allocations in fusible list producers and consumers

For the fusible producer and consumer we can split the allocations in a similar, though
more detailed, way.

The good producer conditions ensure that the producer can be unfolded to give unstream
applied to a stream producer, which itself can be unfolded to give us a stream term
Stream next s0. We are then interested in the allocations involved in the evaluation to
weak head normal form

unstream (Stream next s0) (x : xs ′)

This degree of evaluation places demand on the result of unstream which in turn demands
steps from the stream.

unstream (Stream next s0) unfold next s0

The general case for the stream is a finite number of Skip steps followed by a Yield .

next s0  Skip s1
next s1  Skip s2
. . .
next sn  Yield x sn+1
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This gives us a corresponding sequence of evaluation steps of the overall list term

unfold next s0  unfold next s1
unfold next s1  unfold next s2
. . .
unfold next sn  x : unfold next sn+1

The number of skips is of course determined by the definition of the stream producer
and need not be a constant.

Within the various stream states sx we need to distinguish the constructors used to
represent the state shapes from those used to represent the other variable parts of the
state. This is of course because we expect to eliminate the allocations associated with
the state shapes but not the other variable parts.

We can now classify the allocations involved. We have:

• (whnf skip) the allocations involved in but not retained by the evaluation of the skip
steps next sx  Skip sx+1;

• (skips) the number of Skip constructors;

• (shapesskip) the constructors for the state shapes in the skip states sx

• (varsskip) the constructors for the variables in the shapes in the skip states sx

• (whnf yield) the allocations involved in but not retained by the evaluation of the
yield step next sn  Yield x sn+1;

• (1) the single Yield constructor;

• (elemyield) the allocations retained by the element x ;

• (shapesyield) the constructors for the state shapes in the yield state sn ;

• (varsyield) the constructors for the variables in the shape in the yield state sn ;

• (1) the single (:) constructor;

Note that the first four classes cover all the skip steps – the sum of the allocations for
the individual steps.

For the fusible consumer, the good consumer conditions require that it consumes its
input list using the function stream and a stream consumer. The only breakdown of
allocations we need is to identify the single Yield constructor allocated by stream for
each sequence element. The remaining allocations come from the stream consumer and
we label the term consumeyield .

Thus for the fusible list consumer/producer application, prior to fusion, the total number
of allocations per sequence element is

totalprefuse = whnf skip + skips + shapesskip + varsskip
+ whnf yield + 1 + elemyield + shapesyield + varsyield
+ 1
+ 1 + consumeyield
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4.7.4 Allocation constraints for fusible list functions

Our choice of classification of the allocations identifies the classes that we expect to be
able to eliminate as part of the stream fusion transformations. In particular:

• (1 + 1) by applying the stream/unstream fusion rule we expect to eliminate the (:)
and Yield allocations originating from the stream and unstream functions;

• (skips + 1) by applying the case-of-case transformation we expect to eliminate the
Skip and Yield constructors of the stream producer;

• (shapesskip + shapesyield) by applying call pattern specialisation we expect to elimi-
nate the state shapes in the Skip and Yield steps.

In Sections 4.7.6–4.7.10 we will check that the various transformations really do eliminate
these classes of allocations. For the moment if we assume that we can eliminate them,
then after stream fusion the total number of allocations per sequence element is

totalpostfuse = whnf skip + varsskip
+ whnf yield + elemyield + varsyield
+ consumeyield

Recall that the allocations for the ordinary list producer/consumer application is

totalordinary = whnf cons + 1 + head cons + tail cons
+ consumecons

Our target is for the fused application to use exactly one fewer allocation than the
ordinary list producer/consumer application, i.e. totalpostfuse = totalordinary − 1, which is
equivalent to

whnf skip + varsskip = whnf cons + head cons + tail cons
+ whnf yield + elemyield + varsyield
+ consumeyield + consumecons

This gives us the relationship between the ordinary and fusible list functions that we
have been looking for. We can now interpret what it means and what constraints it
places on the definitions of fusible list producers and consumers. We shall see that it
precisely expresses our initial intuition that the only difference in allocations between
the ordinary and fusible definitions should be due the representation of the sequences.

As stated, this relationship is a tight bound. We could state it more generally by taking
totalpostfuse < totalordinary . Informally this would mean we allow for the fusible versions
to be simply better than the ordinary equivalent, e.g. by using a better algorithm. It is
not especially useful to consider this greater generality however because the situation
does not occur in practice; any improved stream function can trivially be translated into
a list version.
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Since the allocations of the producer and consumer are independent we can use a simpler
special case of the relationship

whnf skip + varsskip = whnf cons + head cons + tail cons
+ whnf yield + elemyield + varsyield

consumeyield = consumecons

Allocation constraint for list consumers

The constraint for consumers is simply

consumeyield = consumecons

The interpretation is also simple.

Recall that the total number of allocations per sequence element for the ordinary consumer
is consumecons . For the fusible consumer the total is consumeyield + 1. The +1 is for
the single Yield constructor allocated by stream, and this is the only allocation due to
the stream function – all the remaining consumeyield allocations are due to the stream
consumer itself.

So this relation simply says that the stream consumer and the ordinary list consumer
must use the same number of allocations per sequence element. The allocation due to
the stream function can be ignored as it will be eliminated.

Allocation constraint for list producers

The constraint for producers is

whnf skip + varsskip = whnf cons + head cons + tail cons
+ whnf yield + elemyield + varsyield

For ordinary list producers the total allocations per sequence element is

whnf cons + head cons + tail cons + 1

The +1 is for the list (:) constructor itself.

For the fusible list producers, the total allocations per sequence element is

whnf skip + skips + shapesskip + varsskip
+ whnf yield + 1 + elemyield + shapesyield + varsyield + 1

If we look at the total allocations, less those mentioned in the constraint above then we
have

skips + shapesskip
+ 1 + shapesyield + 1

The final +1 is for the single (:) constructor allocated by unstream. The skips+shapesskip
allocations are for the Skip constructors and the constructors used to represent the Skip
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state shapes. Similarly, the 1 + shapesyield allocations are for the Yield constructor and
the constructors used to represent the Yield state shape.

So the interpretation of this relation is that the stream producer and the ordinary list
producer must use the same number of allocations per sequence element, except that we
discount the (:) for the ordinary list producer and for the stream consumer we discount
the Skip, Yield and the constructors used for the static state shapes.

4.7.5 Feasibility of the allocation constraints

Having seen that the allocation constraints appear reasonable, we will now look at a
few examples to see if they satisfy the allocation constraint. The purpose is primarily
to check that the constraints we derived are not always impossible and secondarily to
demonstrate how the check can be done. For a library of fusible functions, each function
must be checked to make sure it satisfies the allocation constraint.

A simple example

We will start with the same contrived list producer as before, along with an equivalent
stream version

evensFrom n | even n = n : evensFrom (n + 1)
| otherwise = evensFrom (n + 1)

evensFroms n = Stream next n
where
next n | even n = Yield n (n + 1)

| otherwise = Skip (n + 1)

For the ordinary list version we have the following typical evaluation

evensFrom 1
 
evensFrom (1 + 1)
 
2 : evensFrom (2 + 1)

Apart from the (:), there are three allocations: the 1 in the 1 + 1 intermediate term, the
reduced value 2 and the 1 in the 2 + 1 term. For simplicity we assume a näıve evaluator
that does no strictness analysis or primitive redex analysis. An optimising compiler
would be able to avoid allocating the 1 in the 1 + 1 intermediate term. This issue does
not affect our analysis as long as we use the same evaluator consistently.

We are interested in the sum whnf cons + head cons + tail cons . As we noted previously, this
sum is all of the allocations of the list producer apart from the (:) itself. We do not
need to assign the allocations to the classes whnf cons , head cons and tail cons because the
allocation constraint involves their sum. Nevertheless, for the first simple example it may
be illuminating to do so. We will not repeat the exercise for the later examples.
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In this example then, head cons = 1 because it is a newly allocated Int , not one that was
passed in. We also have a distinct Int allocated and retained in the tail, thus tail cons = 1.
Finally, there is the intermediate Int , distinct from the other two, that is not retained in
the result, hence whnf cons = 1. Note that the allocated 2 is shared between the head
and tail terms. We arbitrarily assigned it to the head but it is clear that if we made the
reverse decision then, though the breakdown is different, the sum would not be affected.
It is a benefit of not performing the more detailed breakdown that we are not faced with
such arbitrary choices.

For the fusible version we have a similar sequence of evaluation steps

next 1  Skip (1 + 1)

next (1 + 1) Yield 2 (2 + 1)

We are interested in the sum whnf skip+varsskip+whnf yield+elemyield+varsyield which we
noted previously is all of the stream producer allocations except for the Skip, Yield and
any constructors used to represent the state shapes. This example uses no constructors
for state shapes because it uses a single trivial state shape so for this example we are
interested in all the allocations except for the Skip and Yield . Again it is not essential
that we assign the allocations to the various classes, we do so only for this first example.

In the first evaluation step we allocate a 1 for the Skip result state. In the second
evaluation step we reduce 1 + 1 and allocate the result 2 which becomes the Yield
element. We also allocate a 1 for the Yield result state. Thus we have varsskip = 1,
elemyield = 1 and varsyield = 1. We have whnf skip = 0 and whnf yield = 0 because there
are no other allocations that are not retained by an intermediate Skip state or by the
Yield result. The allocated 2 is shared between the element and new state in the Yield .
Again, we arbitrarily assign it to the elemyield class and again it is clear that this choice
does not affect the sum.

In totality then, the sum is three allocations for the stream producer which is the same
as for the ordinary list version and thus this pair of ordinary and fusible list producers
satisfy the allocation constraint.

Apart from the minor issue of how shared allocations are accounted, it will typically be
the case that the classes of allocations match up as follows

whnf cons = whnf skip + varsskip + whnf yield
head cons = elemyield

tail cons = varsyield

The unstream function maps streams to lists, but it also gives rise to a mapping from the
stream allocations classes into the list allocation classes. If the stream and list version are
very similar then this mapping into the list allocation classes gives us the above matches.
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Allocations for filter and filter s

For a standard example of a list producer we look at filter . It is a transformer and also
has non-trivial allocation behaviour.

filter :: (a → Bool)→ [a ]→ [a ]
filter p xs = case xs of

[ ] → [ ]
(x : xs ′) | p x → x : filter p xs

| otherwise → filter p xs

We must decide how to account for allocations by the transformer’s input sequence. The
obvious choice is to assign them to the list producer function that generated the input
list. In this example the top level case scrutinises xs and, in the branch we are interested
in, it performs the evaluation xs  (x : xs ′). We assign the allocations involved in this
evaluation to the producer of the input list. Overall, to evaluate filter p xs  (x : xs ′)
we must evaluate p on some finite sequence of elements where p xi  False followed by
evaluating p xn  True.

filter s :: (a → Bool)→ Stream a → Stream a
filter s p (Stream next0 s0) = Stream next s0
where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ | p x → Yield x s ′

| otherwise → Skip s ′

For the stream version we can ignore the allocations involved in evaluating next0 s
because they are assigned to the producer of the input stream. There are no allocations
in the Skip case. So we have just the allocations involved in evaluating p xi  False
some number of times, followed by evaluating p xn  True. Since the sequence elements
are the same between the list and stream versions then the evaluations and allocations
performed are identical.

Allocations for zip and zips

In many ways zip is even simpler than filter . The only allocation of interest is the (, ) in
the (a, b) element result.

zip :: [a ]→ [b ]→ [(a, b)]
zip [ ] ys = [ ]
zip xs [ ] = [ ]
zip (x : xs) (y : ys) = (x , y) : zip xs ys
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zip :: Stream a → Stream b → Stream (a, b)
zip (Stream nexta sa) (Stream nextb sb) = Stream next (sa , sb ,Nothing)
where
next (sa , sb ,Nothing) = case nexta sa of

Done → Done
Skip s ′a → Skip (s ′a , sb ,Nothing)
Yield a s ′a → Skip (s ′a , sb , Just a)

next (s ′a , sb , Just a) = case nextb sb of
Done → Done
Skip s ′b → Skip (s ′a , s

′
b , Just a)

Yield b s ′b → Yield (a, b) (s ′a , s
′
b ,Nothing)

Again, the input streams may skip so we have a finite sequence of Skip evaluations
followed by a Yield step which allocates a (, ) constructor. Since next performs no
allocations in the Skip two cases then there is only the single allocation.

Allocations for foldr and foldr s

Recall that for a consumer we need the allocations per sequence element consumed to be
identical between the list and stream version.

foldr f z xs = go f z xs
where
go f z xs = case xs of

[ ] → z
(x : xs ′)→ f x (go f z xs ′)

Again, the allocations involved in evaluating the input list to WHNF is assigned to the
producer so we need not consider it here. We need only be concerned with the case
branch (x : xs ′)→ f x (go f z xs ′). There are no immediate constructor allocations here,
all the parameters passed to f and go are preexisting terms. All the allocations here are
in the evaluation of f x (go f z xs ′) to WHNF. Clearly if f demands go f z xs ′ then
allocations involved in its evaluation should be assigned to the next iteration, since we
are looking at allocations per sequence element.

The stream version is almost identical.

foldr s f z (Stream next s) = go f z s
where
go f z s = case next s of

Done → z
Skip s ′ → go f z s ′

Yield x s ′ → f x (go f z s ′)

As required, the Skip case performs no allocation, so a finite sequence of Skips followed
by a Yield only involves the allocations involved in evaluating f x (go f z xs ′) to WHNF.
Again, we can assign the cost of go f z xs ′ to the next iteration. Thus the list and stream
versions have the same allocation cost per sequence element.
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4.7.6 Overall allocation change due to stream fusion

Recall that the allocation argument starts with a single good consumer applied to a
single good producer.

consumer fusible (producer fusible . . .)

In Sections 4.7.3 and 4.7.4 we identified various classes of allocations in this good
consumer/producer application term that must be eliminated for stream fusion to be an
overall optimisation:

• (1 + 1) the (:) and Yield constructors in the stream and unstream functions;

• (skips + 1) the Skip and Yield constructors in the stream producer;

• (shapesskip + shapesyield) the constructors used to represent the state shapes in the
Skip and Yield steps in the stream producer.

There is a relationship between these allocation classes and the transformations that
eliminate them. For the three major transformations in stream fusion we expect that:

• the initial phase, including the use of the stream/unstream fusion rule (see Sec-
tion 4.2), will eliminate:

– (1 + 1) the (:) and Yield constructors in the stream and unstream functions;

• stream transformer/producer fusion (see Section 4.5) will eliminate:

– (skips + 1) the Skip and Yield constructors in the stream producer;

– but that it may increase allocations in the shapesskip and shapesyield classes;

• stream consumer/producer fusion (see Section 4.6) will eliminate:

– (skips + 1) the Skip and Yield constructors in the stream producer;

– (shapesskip + shapesyield) the constructors used to represent the state shapes
in the Skip and Yield steps in the stream producer.

For the first transformation, the relationship is simple: given a good consumer applied
to a good producer, there is a single opportunity to apply the stream/unstream fusion
rule which will eliminate the 1 + 1 allocations.

For the latter two transformations we need to relate our single good producer/consumer
application to uses of the two fusion steps so that we can account for all the other
skips + 1 + shapesskip + shapesyield allocations that we need to eliminate.

Recall from Section 4.2.1 and 4.2.2 that a good producer is defined using a stream
producer and that a good consumer is defined using a stream consumer, however either or
both of the stream producer and stream consumer may in fact be a stream transformer.
Recall from Section 4.3.1 that we distinguish stream transformers as a special case, and
in particular that we have to treat as a single unit applicative combinations of stream
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consumer, stream transformers and stream producers. Optimising these larger units may
involve multiple applications of stream transformer/producer fusion followed by a single
application of stream consumer/producer fusion.

In Sections 4.2.3 and 4.3.1 we discussed how the construction of good producers and
consumers ensures that there are no ‘naked’ streams as inputs or as results, and hence that
these applicative terms of consumer, transformers and producers always take the form of
trees with a single consumer at the root and producers at the leaves. Recall from Sec-
tion 4.3.2 that we proceed bottom-up, repeatedly applying stream transformer/producer
fusion at the leaves until we are left with a consumer applied to a single stream producer,
at which point we apply stream consumer/producer fusion.

Each good producer/consumer application pair gives rise to a single edge in such a tree.
We apply stream transformer/producer fusion as many times as there are interior nodes
in the tree. Since stream transformer/producer fusion fuses the transformer with all of
its input producers then this covers all non-root edges in the tree. We apply stream
consumer/producer fusion only once, which covers the root edge. Hence all edges of
the tree are covered by one of the two fusion steps. For all edges we must eliminate
both skips + 1 and shapesskip + shapesyield . Since both stream transformer/producer
fusion and stream consumer/producer fusion eliminate the skips + 1 allocations for all
their input producers then we have covered these allocations for all edges. Stream
transformer/producer fusion preserves and may even increase the shapesskip + shapesyield
allocations both of the transformer and of the producer so that the resulting stream
producer contains at least their sum. Thus the shapesskip + shapesyield allocations for
each non-root node are preserved or increased; they are accumulated up the tree and
finally they are eliminated by the single use of stream consumer/producer fusion.

Overall then, the combined effect of these transformation steps is to eliminate the classes
of allocations required for stream fusion to be an optimisation. It remains to show that
the major transformation steps do eliminate the allocations that we expect and that they
do not increase other allocations.

4.7.7 Lack of fusion is not a pessimisation

Our argument in this chapter is primarily concerned with allocation change in the case
that we can fuse producers and consumers. It is also important however to consider what
happens when fusion does not occur. While we guarantee fusion to occur when a good
consumer is directly applied to a good producer, there are other cases to consider:

• a good producer or a good consumer that is used in isolation;

• a function that is a good consumer in multiple arguments, but a use site where it
is only applied to good producers for some of those arguments;

• a function that is both a good consumer and a good producer but a use site where
it is only used with a good producer or consumer on one side.
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One can characterise stream fusion as a process involving taking one step back before
taking two steps forward, so it is reasonable to worry that we may end up making things
worse in cases where we are unable to fuse a function in one or more of its inputs or
outputs. Fortunately there is no such problem: in all such cases stream fusion will be
exactly neutral in terms of our allocation cost measure.

There are two possibilities: the rest of this chapter is concerned with the case where a
good consumer is directly applied to a good producer; the alternative possibility is a
good producer or a good consumer that does not appear in a good producer/consumer
application term. Since we do not have a good producer/consumer application then
we cannot apply the stream/unstream fusion rule. The consequence is that we are left
with a good producer or a good consumer. A good consumer however unfolds to give
a stream consumer applied to a stream term, while a good producer unfolds to give
unstream applied to a stream producer. Since stream is a stream producer and unstream
is a stream consumer, then in both cases we have a stream producer applied to a stream
consumer and we can apply stream consumer/producer fusion. In both cases, applying
stream consumer/producer fusion leaves us with exactly as many allocations as we would
have had with the ordinary list version6.

Let us briefly do the accounting, first for the producer case, then for the consumer case.
Recall from Sections 4.7.2 and 4.7.3 that the allocation cost of an ordinary producer is

whnf cons + 1 + head cons + tail cons

while the allocation cost of its fusible equivalent is

whnf skip + skips + shapesskip + varsskip
+ whnf yield + 1 + elemyield + shapesyield + varsyield
+ 1

We may assume that the ordinary and fusible versions satisfy the allocation constraint.

whnf skip + varsskip = whnf cons + head cons + tail cons
+ whnf yield + elemyield + varsyield

We are interested in the difference between the allocations of the ordinary producer and
the fusible producer. If we take the difference and simplify it by using the allocation
constraint as a substitution, followed by cancelling out terms, then we are left with

skips + 1 + shapesyield + shapesskip

That is, prior to any fusion, the fusible producer uses this many more allocations than
the ordinary producer. Recall from Section 4.7.6 that this is exactly the allocations that
we expect to be eliminated by stream consumer/producer fusion.

For consumers the accounting is simpler. The original consumer allocates consumecons
while the fusible equivalent allocates 1 + consumeyield . Given the allocation constraint
consumeyield = consumecons then the difference is just 1. We next consider the allocations
that are eliminated when we apply stream consumer/producer fusion on the application

6There is at most some code duplication – something not captured by our cost measure.
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of the stream consumer to the stream producer function stream. For an arbitrary stream
producer, we would eliminate skips+1+ shapesyield + shapesskip but in the case of stream
specifically, the stream stepper function does not use any state shapes and it does not
use Skip so we eliminate only the the Yield , exactly 1 allocation.

Hence, for both cases – unfused good producers and unfused good consumers – stream
consumer/producer fusion eliminates exactly the number of allocations such that the
allocation change is neutral compared to the ordinary list producers or consumers.

4.7.8 Allocation change in the stream/unstream fusion phase

The only transformations in this phase that affect the number of data constructor
allocations is the application of the stream/unstream fusion rule itself. The unfolding,
β-reduction and let-floating transformations do not affect the number of allocations.

It should be noted that, in this context, by unfolding we mean just replacing a name
by the expression that it stands for. Unfolding may of course give rise to opportunities
for reducing cases of known constructors – which does reduce allocations – but case
reduction must be considered distinctly from unfolding.

Given a good consumer applied to a single good producer, there is a single opportunity
to apply the stream/unstream fusion rule. There is one allocation per sequence element
in each of the stream and unstream functions: the (:) and Yield constructors respectively.
Applying the stream/unstream fusion rule eliminates both functions and thereby the
corresponding two allocations.

While it is clear that the fusion rule eliminates two allocations we must also check that
it does not increase allocations elsewhere. Consider a consumer/producer term before
applying the fusion rule.

consumer s (stream (unstream (producer s . . .)))

The unstream function filters out the Skip steps so that the consumer never sees any.

consumer s (producer s . . .)

After applying the stream/unstream fusion rule the stream consumer is directly applied
to the stream producer and will receive any Skip steps the producer emits.

To guarantee that the stream/unstream fusion rule reduces allocations it is therefore
essential that the consumer does not perform any allocations while processing a Skip
step. It is for this reason that we have imposed such a condition on stream consumers
and transformers: producer condition 5 (Section 4.5.4) and consumer condition 7 (Sec-
tion 4.6.3).

4.7.9 Allocation change in stream transformer/producer fusion

As described in Section 4.5, stream transformer/producer fusion is the transformation
whereby the application of a single stream transformer to one or more stream producers is
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fused to give a single stream producer. The remaining obligation for this transformation
is to show that it eliminates the allocation of the Skip and Yield constructors in each of
the input stream producers and that while the transformation may increase the number
of allocations, the increase is restricted to the shapesskip and shapesyield allocation classes.

Stream transformer/producer fusion consists of a number of simpler transformations
which are described in detail in Section 4.5.5. In summary, the steps are:

• unfolding the definitions of the transformer and producers;

• let-floating followed by case of a known constructor reduction to eliminate the
Stream constructors

• unfolding the definition of the producers’ stepper functions in scrutinee positions
in the transformer’s stepper function;

• the general case-of-case transformation;

• the specialisation transformation used to preserve the strong state shape matching
property.

Unfolding and let-floating do not change the number of constructor allocations. The
Stream constructor for each of the stream producers is eliminated, though as mentioned
in the introduction to Section 4.7, we have ignored this allocation since it is per sequence
and not per sequence element.

The important step is the use of the general case-of-case transformation to eliminate
the Done, Skip and Yield constructors produced as the result of each stream producer’s
stepper function. The general case-of-case transformation is described in Section 4.5.7,
and the specific use of it is described in Section 4.5.5.

The stream producers’ stepper functions only occur in case scrutinee positions in the
transformer’s stepper function. The general case-of-case transformation is used once for
each such occurrence. In each use it eliminates the Step constructors in the leaf positions
of the stepper function. Thus, for each stream producer that has its stepper function
used by the stream transformer, the Step constructors used in the stepper function’s
result are eliminated. The null case, where an input stream producer’s stepper function
is not used, contributes zero allocations so can be ignored.

To see that it does not change any other classes of allocations, consider that the general
case-of-case transformation consists of: 1) pushing one case expression through an inner
one, which does not change allocations; and 2) reducing a case of a known constructor,
which eliminates one allocation but is used only for the leaf positions. The leaf positions
contain only Step constructors (producer condition 6).

The specialisation transformation is described in Section 4.5.3. The argument that it
increases allocations only in the classes shapesskip and shapesyield is given in Section 4.5.5.
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4.7.10 Allocation change in stream producer/consumer fusion

As described in Section 4.6, stream consumer/producer fusion is the transformation
whereby the application of a single stream consumer to a single stream producer is fused
to give a collection of mutually recursive functions. Our obligation for this transformation
is to show that it eliminates certain allocations in the stream producer and that it
otherwise leaves the number of allocations unchanged. We expect it to eliminate the
Skip and Yield constructors and the constructors used to represent the state shapes in
the Skip and Yield steps.

Section 4.6.4 describes the various transformations that make up consumer/producer
fusion. In summary the steps are:

• unfolding the definition of the consumer and producer;

• let-floating followed by case of a known constructor reduction to eliminate the
Stream constructor

• unfolding the definition of the producer’s stepper function in scrutinee positions in
the consumer’s worker function;

• the general case-of-case transformation;

• the call pattern specialisation transformation.

The important steps are the final two.

The unfolding and let-floating do not change the number of allocations. The Stream
constructor in the producer is eliminated by case reduction following unfolding the
definition of the producer.

The general case-of-case transformation is used – in almost exactly the same way as in
stream transformer/producer fusion – to eliminate the Step constructors in the producer.
The stepper function of the stream producer occurs only in case scrutinee positions in
the consumer’s worker function. The general case-of-case transformation is used once
for each such occurrence which eliminates the Step constructors in the leaf positions of
the stepper function. Thus if the stream producer’s stepper function is used at all by
the stream consumer then the Step constructors used in the stepper function’s result are
eliminated. In the null case the stream producer’s stepper function is not used and hence
contributes zero allocations. The general case-of-case only eliminates the constructors in
the leaf positions of the stepper function and hence the transformation does not affect
any of the other allocation classes.

The final step is the call pattern specialisation transformation. The argument that it
eliminates the constructors used to represent the producer’s state shapes is given in
Section 4.6.5. To see that it does not affect other allocation classes consider: 1) the only
step that adds constructors is the step where the specialised worker functions are defined;
for each state shape they are defined using the body of the original worker function but
with the state parameter substituted for the state shape pattern; 2) the state parameter
occurs only in recursive calls to the worker function or case expression trees that match
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all state shapes; 3) in both cases the constructors are eliminated by replacing a call to a
specialised worker or by case of known constructor reduction respectively.

4.7.11 Sharing

We will look at two examples where violating one of the good producer or consumer
conditions leads to the fusion transformations not being an optimisation. In both cases
this is due to a loss of sharing.

Violating the linearity condition

Svenningsson (2002, Appendix A) states that shortcut fusion is not an improvement.
This is based on a space-usage metric similar to the one that we have employed in
this section. Svenningsson gives an example where foldr/build increases sharing and an
example where unbuild/unfoldr loses sharing. Either an increase or a decrease in sharing
is problematic: decreased sharing can lead to duplication of allocations while increased
sharing can lead to increased peak heap residency.

Although the unbuild/unfoldr example can easily be translated into a stream version,
Svenningsson’s observation does not contradict the result of this section, that stream
fusion – as we have defined it – is strictly an improvement. The key of course is the
conditions we place on good consumers and producers. Let us consider Svenningsson’s
example and see which of our conditions it violates.

We start with two slightly peculiar definitions

f :: [a ]→ Int
f xs = unbuild f ′ xs
where
f ′ psi xs = case psi xs of

Just (a, ys)→ 1
Nothing → case psi xs of

Nothing → 1
Just (b, zs)→ 1

traverse [ ] = Nothing
traverse (x : xs) = traverse xs

Note that traverse does as its name suggests and traverses its input list but always
returns Nothing in the end. Now take the expression

f (unfoldr traverse xs)

Since traverse xs = Nothing then unfoldr traverse xs = [ ]. In evaluating this expression
the list xs is traversed only once: when traverse is called by unfoldr .
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If we now unfold the definition of f we get an opportunity to apply the unbuild/unfoldr
fusion rule

unbuild f ′ (unfoldr traverse xs)
where
f ′ = . . .

Applying the fusion rule gives us

case traverse xs of
Just (a, ys)→ 1
Nothing → case traverse xs of

Nothing → 1
Just (b, zs)→ 1

We now see that traverse xs is evaluated twice – a loss of sharing. Prior to using the
fusion rule, the result of traverse was memoised in the list structure. Afterwards, there
is no memoisation and if the stepper function psi is called multiple times with the same
arguments then the evaluation is duplicated.

The example can easily be translated into a stream version

f :: [a ]→ Int
f = fs ◦ stream
fs :: Stream a → Int
fs (Stream next s) = go s
where
go s = case next s of

Yield a s ′ → 1
Done → case next s of

Done → 1
Yield b s ′′ → 1

The key feature is that the stream worker function go uses next s twice. This is prohibited
by consumer condition 8 which requires that the stream state be used linearly. If the
stream state is used linearly then each step in the stream can only be evaluated once
and hence there can be no loss of sharing, despite the lack of memoisation.

Violating the allocation condition

It is interesting to see an example that does not satisfy the allocation constraint of
Section 4.7.4. Consider tail

tail :: [a ]→ [a ]
tail xs = case xs of

[ ] → error "tail []"

(x : xs)→ xs

We do not even need to compare it to the stream version because the list version does not
satisfy a crucial condition. Suppose we have ys = tail xs and we evaluate ys  (y : ys ′).
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Recall from Section 4.7.2 that we require the top level constructor (:) to be allocated
during the evaluation step, but this is not the case for tail . What would go wrong is
that since there are no list (:) constructor allocations that can be saved, then the stream
version cannot be an optimisation.

If we wrote a non-standard and inefficient version of tail that reconstructed the tail, then
we could easily establish the allocation constraint. The other important list function in
this class is (++)/append because it returns its second argument rather than allocating
new (:) constructors.

This problem does not mean that it is never profitable to fuse functions such as tail and
append . Consider

tail (enumFromTo n m)

The combined producer does allocate fresh (:) constructors. We could take equivalent
stream versions and profitably fuse them with a consumer which would eliminate the
intermediate (:) allocations. Note however that it would only eliminate one set of (:)
allocations, not two as with other transformer/producer combinations that do satisfy
the allocation constraint. So whether or not it is beneficial to fuse functions such as tail
depends on the context in which it appears, however taking advantage of this opportunity
in a real implementation would unfortunately add complexity.

4.8 Expressiveness

Having imposed numerous conditions on good producers and good consumers, it is
reasonable to worry that we may be not just restricting the way in which fusible functions
are defined, but severely restricting which fusible functions can be defined at all. In
this section we assess evidence to see whether or not we have excessively restricted
expressiveness.

The most obvious evidence that we have not excessively restricted expressiveness is that
we can in fact define many of the standard list functions in such a way that they satisfy
the good producer and good consumer conditions.

In addition, we can look for functions that we cannot define within our system. By
surveying the Haskell 98 List module we can be reasonably sure that we cover the major
obvious examples. When looking at functions that we cannot define, we must distinguish
between inherent limitations of unfoldr -based fusion systems and extra limitations
imposed by our particular choice of good producer and good consumer conditions.

The only major class of functions we identify, where it is our extra conditions that are
to blame, is the class represented by concatMap. We look briefly at the difficulty with
concatMap.

Finally we can show how to translate a significant subset of functions defined using
unfoldr into stream versions that satisfy the good producer conditions.
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4.8.1 Standard functions

We start by looking at some standard list functions where we can define versions that
satisfy the good producer and good consumer conditions. In particular we can define

Producers
unfoldr ,
iterate, replicate,
enumFrom, enumFromTo

Transformers
map, filter ,
zip, zipWith, zipWith3 ,
scanl , scanl1 ,
init , take, drop, takeWhile, dropWhile,
nub

Consumers
foldr , foldr1 , foldl , foldl1 , foldl ′,
head , last ,
elem, lookup, find , index , findIndex

This list is not comprehensive but is covers many classes of list functions.

The unfoldr function is an important example of course but it is perhaps slightly
misleading: fusing unfoldr only involves eliminating the list it generates; it does not
cover eliminating the Nothing and Just (a, s ′) constructors that are produced by the
unfoldr stepper function. It is possible to automatically eliminate these constructors
using the transformations described in this chapter, but only if the unfoldr stepper
function satisfies conditions equivalent to those imposed on stream producer’s stepper
functions. In particular, the stepper should be non-recursive and should be structured as
a tree of case expressions with Just/Nothing terms in the leaves. Of course, without the
ability to use Skip, the expressiveness of such stepper functions is severely limited. In
Section 4.8.4 we describe a somewhat more general translation from instances of unfoldr
to streams.

The functions iterate, repeat , replicate and the enumeration functions are entirely straight-
forward. It is interesting to note that these functions are so cheap that it may make
sense to duplicate them if it enables more fusion. Consider for example

let ns = enumFromTo n m
xs ′ = zipWith f xs ns
ys ′ = zipWith g ys ns

in . . .

Here it would be profitable to duplicate enumFromTo n m into both use-sites, allowing
stream fusion, rather than building and sharing the list. Compilers typically avoid
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such duplication since, in general, it leads to duplicated work. Some compilers, have
mechanisms to allow certain function terms to be duplicated7.

The list transformer functions map, filter and the various zip functions are important
representative functions and we have covered them in detail in previous sections.

The nub function is somewhat interesting: the standard definition uses a list as an
internal data structure (representing a set) but it is otherwise an unremarkable instance
of both foldr and unfoldr . The stream version of nub works in exactly the same way,
using a list as an internal data structure; the input and output lists can however be
eliminated.

The list consumers foldr and foldl are of course important patterns for consumers and
we can express both in a direct fashion. Interestingly we can also express the variants
foldr1 and foldl1 easily whereas these are hard to express in terms of foldr and thus
hard to fuse under the foldr/build fusion system.

4.8.2 Functions that cannot be defined within the system

There are of course a number of functions that we cannot define at all or that we cannot
define in such a way that they satisfy the good producer and good consumer conditions.
We will look at a number of examples grouped by the reason for the problem.

Stream fusion is an unfoldr -based system and we expect to inherent many of its expressive
limitations. Thus when looking at the various problems, in addition to considering the
immediate reason – described in terms of the good producer and good consumer conditions
– it is useful to consider whether the function in question could be defined equivalently in
terms of unfoldr . There are a series of reasons why a list producer may not be expressible
as an instance of unfoldr :

• not expressible as an unfoldr at all

• not expressible as an unfoldr with the same results at partial values

• not expressible as an unfoldr with the same sharing properties

• not expressible as an unfoldr with the same number of constructor allocations

Of course, looking at definability in terms of unfoldr only helps us with analysing
limitations on stream producers; it is less helpful for stream transformers and not useful
for stream consumers.

7GHC allows programmers to annotate functions as being ‘constructor-like’ which declares to the
optimiser that the function should be considered cheap enough to duplicate if it enables a rewrite rule
to be applied. For more details see the GHC users guide on the ‘CONLIKE’ pragma.
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Single stream output limitation

unzip :: [(a, b)] → ([a ], [b ])
splitAt :: Int → [a ] → ([a ], [a ])
partition :: (a → Bool)→ [a ]→ ([a ], [a ])
span, break :: (a → Bool)→ [a ]→ ([a ], [a ])

Recall from Section 4.2.4 that we only aim to improve functions that have lists as simple
inputs or outputs, not lists embedded in other types such as pairs or functions. The
above group of functions return pairs of lists and they cannot be decomposed into pairs
of list producers without a loss of sharing.

For example, semantically we can decompose splitAt n xs into (take n xs , drop n xs),
however the standard splitAt definition makes only a single traversal of xs while a
definition in terms of take and drop may make two traversals. Multiple traversals of a
stream implies duplicating the work of the stream producer.

Not being able to define fusible functions with multiple stream outputs would appear to
be a fundamental limitation of unfoldr -based fusion systems. Recall from Section 1.3.8
that one of the touted advantages of unbuild/unfoldr fusion over foldr/build fusion is
that it can fuse functions such as zip that consume multiple lists. We might expect some
kind of duality where unfoldr -based systems cannot fuse functions that produce multiple
lists while foldr -based systems can. That is, we might expect that under the foldr/build
system we could define unzip so that it is a good producer for both output lists.

zip :: [a ]→ [b ]→ [(a, b)]
unzip :: [(a, b)] → ([a ], [b ])

This is not the case however8, foldr/build fusion is also unable to fuse functions that
produce multiple lists. The reason is simply that build produces a single list.

build :: ∀a. (∀b.(a → b → b)→ b → b)→ [a ]

It is possible to extend however: it is straightforward to abstract a list producer like
unzip over (:) and [ ], and it is also straightforward to write a version of build that builds
a pair of lists.

buildPair :: ∀a b. (∀c d .(a → c → c)→ c →
(b → d → d)→ d → (c, d))→ ([a ], [b ])

buildPair g = g (:) [ ] (:) [ ]

unzip xs = buildPair (λcons nil cons ′ nil ′ →
foldr (λ(a, b) ∼(as , bs)→ (a ‘cons ‘ as , b ‘cons ′‘ bs)) (nil , nil ′) xs)

Note that we must abstract over the construction of the two lists separately, otherwise
we would constrain the two lists to have the same type.

Chitil (2000) takes this idea much further and presents an inference algorithm to generate
the appropriate ‘build wrapper’ for each function. Despite this significant generalisation

8Gill (1996, Section 3.5.3) lists unzip as a good producer but this was an oversight (confirmed by
personal communication).
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Chitil does not present any method to fuse multiple consumers with such a producer –
he only presents examples such as foldr f z (fst (unzip . . .)) where one of the outputs is
selected and consumed with a foldr . Thus it appears to remain an open question as to
whether functions with multiple outputs can be effectively fused in a foldr -based system9.

Reliance on memoisation in a list data structure

scanr :: (a → b → b)→ b → [a ]→ [b ]
scanr1 :: (a → a → a) → [a ]→ [a ]

Interestingly, while it is straightforward to define stream versions of scanl and scanl1 , it
appears not to be possible to define stream versions of scanr and scanr1 at all – with or
without our additional conditions. The standard definition of scanr is

scanr f q0 [ ] = [q0 ]
scanr f q0 (x : xs) = f x q : qs where qs@(q : ) = scanr f q0 xs

This definition allows results to be produced incrementally if the function f is non-strict
in its second argument10. This definition appears to rely on sharing within the structure
of the list: note that it memoises qs – the result of scanr for the tail xs . It is not possible
using unfoldr to construct lists that have sharing within the structure of the list.

Sharing between the input and output lists

tail :: [a ]→ [a ]
cons :: a → [a ]→ [a ]
append :: [a ]→ [a ]→ [a ]
insert ::Ord a ⇒ a → [a ]→ [a ]
delete :: Eq a ⇒ a → [a ]→ [a ]

We looked at the tail function previously in Section 4.7.11. The problem is that the
original list versions functions do not satisfy the allocation constraint because they do not
construct a completely fresh list, instead they return some tail of the input list. As we
discussed in Section 4.7.11, this is not necessarily a fatal problem because in many cases
the input list to these functions is freshly constructed. In such cases there is still some
saving to be had, and there is no risk of loss of sharing by stream fusion. Accurately
identifying these cases however adds complexity to a stream fusion implementation.

Sharing within the output list

repeat :: a → [a ]
cycle :: [a ]→ [a ]

9Hinze et al. (2011) present a ‘parallel hylo-ana’ rule which presumably could be dualised to a ‘parallel
cata-hylo’ rule, but the practical implications remain unclear.

10For example scanr (:) [ ] (1 : 2 :⊥) = (1 : 2 :⊥) : (2 :⊥) :⊥
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The repeat and cycle functions are interesting examples. The standard list versions of
these functions construct cyclic list data structures

repeat x = xs ′ where xs ′ = x : xs ′

cycle xs = xs ′ where xs ′ = xs ++ xs ′

Recall that the allocation constraint requires one (:) constructor to be allocated per list
element. The definition of repeat only allocates one (:) for the entire sequence. Stream
fusion will still be an optimisation in this case but it only saves one allocation in total,
rather than one allocation per sequence element. Arguably the allocation constraint
should be relaxed to allow this case. A relaxed constraint would have to distinguish this
case, where fresh allocations are reused multiple times, from the examples above where
the (:) allocations from the input are reused in the output.

The definition of cycle is very similar to that of repeat but its stream equivalent is more
subtle. The most obvious stream version would violate the linearity constraint by reusing
the initial stream state each time round the sequence. It is right to exclude such a version
because in general it could lead to unbounded duplication of work. Again, there will be
special cases where the duplication is bounded and the stream version is still profitable.
Alternatively, instead of saving the initial state a stream version could store the elements
of the input sequence in some data structure. This would necessarily mean it does not
satisfy the allocation constraint, though such a definition could at least be neutral in
terms of allocation change.

No allocation advantage

reverse :: [a ]→ [a ]

We can write a stream version of reverse however it has to use a data structure to
hold the accumulated input sequence before producing the result. The list version of
reverse uses a list as the data structure for accumulating the input sequence and is
able to reuse the same data structure as the result. The stream version on the other
hand must traverse its internal data structure to produce the output sequence. If we do
the allocation accounting we find that the stream version uses one more allocation per
sequence element and thus after fusion the allocation change is exactly zero. So reverse
is an example where stream fusion works but does not save any allocations. It may still
be worthwhile to fuse, but to decide we would need either a more detailed cost model or
empirical measurements.

Higher order stream input

concatMap :: (a → [b ])→ [a ] → [b ]
concat :: [ [a ] ]→ [a ]

The same constraint as above that excludes unzip etc. also excludes concatMap. In the
case of concatMap however it is not a expressiveness limitation inherited from unfoldr , it
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is an additional limitation11. We can define concatMap on streams, indeed in Section 3.9.7
we proved that our definition respects the stream abstraction property. The problem is
that we cannot guarantee that we can optimise uses of concatMap and we have taken
the approach of constraining our definition of good producers and consumers to those
that we can guarantee to optimise.

4.8.3 The challenge of optimising concatMap

The function concatMap is important because it represents the entire class of nested list
computations, including list comprehensions (Peyton Jones et al., 2003, Section 3.11).
The foldr/build system is extremely effective for this class of functions. It is thus a
major limitation of stream fusion that, at present, there is no known reliable method of
optimising uses of concatMap.

The first stage involving the stream/unstream fusion rule is straightforward and works
as expected. The list wrapper for the stream version of concatMap is

concatMap :: (a → [b ])→ [a ]→ [b ]
concatMap f = unstream ◦ concatMaps (stream ◦ f ) ◦ stream

Suppose we have good producers f and g , and a good consumer h

f = unstream ◦ fs
g = unstream ◦ gs
h = hs ◦ stream

If we directly compose these together with concatMap then we can follow the stan-
dard transformations from Section 4.2, that is, unfolding followed by applying the
stream/unstream rule.

h ◦ concatMap f ◦ g
=
hs ◦ stream ◦ unstream ◦ concatMaps (stream ◦ unstream ◦ fs)
◦ stream ◦ unstream ◦ gs

=
hs ◦ concatMaps fs ◦ gs

The subsequent phases are problematic.

In previous work (Coutts et al., 2007b, Section 7.2) we described two techniques that
are effective in some cases: the static argument transformation, and specialising on
partial applications. We will not consider these two techniques in detail, rather we will
briefly outline what makes the problem non-trivial and survey some possible alternative
approaches.

11It should be noted however that this is not a disadvantage compared to unbuild/unfold fusion as no
method for expressing and optimising concatMap has been presented for this system.
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The definition of concatMaps is

concatMaps :: (a → Stream b)→ Stream a → Stream b
concatMaps f (Stream nexta sa) = Stream next (sa ,Nothing)
where
next (sa ,Nothing) =
case nexta sa of
Done → Done
Skip s ′a → Skip (s ′a ,Nothing)
Yield a s ′a → Skip (s ′a , Just (f a))

next (sa , Just (Stream nextb sb)) =
case nextb sb of
Done → Skip (sa ,Nothing)
Skip s ′b → Skip (sa , Just (Stream nextb s

′
b))

Yield b s ′b → Yield b (sa , Just (Stream nextb s
′
b))

Before looking at the details of the next stepper function, it is helpful to compare
concatMap with a traditional nested loop construct. One can either see this as an
analogy or as a goal since if a concatMap stream is consumed by a strict left fold then
the ideal code to generate is exactly a nested loop. We can characterise the nested loop
in imperative pseudocode as:

foreach (x in xs) {

foreach (y in (f x)) {

...

}

}

If we consider the evaluation states for a nested loop, we have two modes: in one mode
we are in the outer loop performing calculations to decide if there will be a next iteration
and setting up values that will be needed by the inner loop; in the other mode we are in
the inner loop performing an iteration.

The stepper function of concatMaps follows this pattern. The outer mode has just the
state of the outer stream. In the outer mode the stepper function pulls from the outer
stream. When it obtains an element from the outer stream it applies a function to obtain
the inner stream and it steps to the inner mode. The inner mode holds the current state
of the outer stream and the entire inner stream – stepper and current state. In the
inner mode the stepper function pulls from the inner stream. When the inner stream is
exhausted it steps back to the outer mode.

In a typical nested loop, there is a single inner loop and it is parametrised by variables
in the outer loop. In contrast, it is possible to have multiple independent inner loops,
with independent sets of state variables, and there is the potential for each iteration of
the outer loop to select a different inner loop.
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foreach (x in xs) {

switch (f x)

0: foreach (y in ...

1: foreach (y in ...

2: foreach (y in ...

...

}

The construction of concatMaps is sufficiently general to express these non-typical nested
loops and it is this degree of expressiveness that makes it hard to optimise.

In the concatMaps stepper function, the inner mode contains the whole inner stream and
thus in principle each iteration of the outer loop can have an inner loop with a different
stepper function and even a different internal state type. We must write concatMaps

with this level of generality if we are to give it its usual type. The type of concatMaps

allows examples such as the following where we choose completely different streams –
with different stepper functions and state types – depending on a runtime test.

concatMaps (λx → if p x then Stream nexta (sa x )
else Stream nextb (sb x ))

It is however quite unreasonable to expect that we can optimise such examples.

As an aside, it is worth noting that the foldr/build system cannot handle this example
either and for essentially the same reason. Under the foldr/build system the crux of this
example would be a situation like

foldr c n (if p x then build (. .)
else build (. .))

The problem would be that we could not make use of the foldr/build rule, since the foldr
is not applied directly to the build .

By way of example, recall from Section 4.2 that we only expect to fuse terms where
a good consumer is applied directly to a good producer. This requirement is so that
we can apply the stream/unstream rule statically. It means we cannot hope to improve
examples such as

consumes (stream (if even n then unstream (. . .)
else unstream (. . .)))

Similarly, we require that good producers use a single unstream applied to a term that
unfolds to a Stream term. We have this requirement so that we can statically apply
stream consumer/producer or transformer/producer fusion.

Given this requirement on stream producers, then in the context of concatMaps , we
should only be faced with terms such as the following.

concatMaps (λx → Stream nextb (f x ))

This is a form that we can hope to optimise because it uses a single inner stream where
the initial state is parametrised by the element value from the outer stream.
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Possible solutions

Even if we restrict our attention to uses of concatMaps of the above form, finding a
reliable optimisation is still a challenge. As mentioned previously, the techniques we
have described elsewhere (Coutts et al., 2007b, Section 7.2) do work in many cases and
further improvements along these lines are no doubt possible. The primary disadvantage
of these implementation-focused techniques is complexity, both in implementation and
explanation. It is hard to give an explanation, such as the one in this chapter, that sets
out what form of input terms are required and gives an argument that the transformations
can always be applied and that they lead to an improvement.

A further practical problem is that not only do these techniques do not work with all
examples, but that this is discovered too late, after they are already committed. The
result can be a significant pessimisation: programs are left with many extra intermediate
data structures, the Step constructors and the constructors used for state shapes.

An alternative approach that could plausibly lead to a reasonable semi-formal argument
is to return to the state machine form that we already know how to optimise. The aim
would be to find a suitable form of state machine composition that takes a state machine
for the outer stream and a parametrised inner state machine and gives a single flattened
state machine.

Another plausible approach starts by looking at the form that we expect to handle

concatMaps (λx → Stream nextb (f x ))

The idea is to write a specialised variant of concatMaps that works for exactly this form.
That is, we specify concatMap ′

s as

concatMap ′
s nextb f = concatMaps (λx → Stream nextb (f x ))

The hope of course is that we can find a definition for concatMap ′
s that takes advantage

of the fact that we now have just a single inner stepper function and a single inner state
type. We can in fact do exactly that

concatMap ′
s :: (a → Step b s)→ (a → s)→ Stream a → Stream b

concatMap ′
s nextb f (Stream nexta sa) = Stream next (sa ,Nothing)

where
next (sa ,Nothing) =
case nexta sa of
Done → Done
Skip s ′a → Skip (s ′a ,Nothing)
Yield a s ′a → Skip (s ′a , Just (f a))

next (sa , Just sb) =
case nextb sb of
Done → Skip (sa ,Nothing)
Skip s ′b → Skip (sa , Just s

′
b)

Yield b s ′b → Yield b (sa , Just s
′
b)

If we can guarantee that f a statically constructs a state shape then this stream definition
satisfies all the stream producer conditions.
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The main difficulty of this approach is that it uses a non-trivial rewrite rule

concatMaps (λx → Stream nextb (f x )) = concatMap ′
s nextb f

This rewrite rule would have to be applied by the compiler at the appropriate point
during compilation. The first difficulty is that it relies on matching under a lambda.
Additionally, to be useful we must match not just on explicit functions that construct the
initial state, but expressions with particular free variables. We actually want to match
lambda expressions of the following form

λx → Stream (⟨stepper⟩[ ]) (⟨e⟩[x ])

The expression ⟨e⟩ may have x as a free variable, while we require that x is not a free
variable in the stepper function. In the result, we want to capture and substitute for the
free variable x so that we can construct a suitable function to pass to concatMap ′

s

concatMap ′
s ⟨stepper⟩ (λy → ⟨e⟩[x := y ])

So while this approach is relatively promising, it relies on a rule matching and rewrite
language that is rather richer than those of most compilers.

List comprehensions

It should be noted that while the meaning of Haskell’s list comprehensions are specified in
terms of concatMap, tackling concatMap directly is not the only approach to handling list
comprehensions. The common translation does not use concatMap and the foldr/build
system has a special translation into uses of foldr and a single build .

To date we have not found an alternative translation that makes it possible to handle
list comprehensions with stream fusion. This is perhaps not surprising because such a
translation would likely also give us a solution for concatMap itself, since concatMap can
be defined straightforwardly as a list comprehension. The foldr/build system can already
handle concatMap, its special translation for list comprehensions does not in principle
add any new capability, it just improves the robustness of the optimisation by reducing
the number of rewrite rules the compiler must apply.

4.8.4 Converting definitions from unfoldr to streams

It is possible to convert many – but not all – list producing functions that are an instance
of unfoldr into stream versions satisfying the good producer conditions. The key is to
convert the unfoldr stepper function into a stream stepper function that satisfies the
stream producer conditions. Essentially, we translate by replacing recursive calls with
skips to new states.

We can approach a translation by looking at the general form of definitions we have before
and after stream consumer/producer fusion. An unfoldr stepper function has aspects of
each. Given a stream producer Stream next s , applying stream consumer/producer fusion
to unstream (Stream next s) gives us a set of mutually recursive function definitions
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g0 x0 . . . xi0 = t0
...
gn x0 . . . xin = tn

Each function body expression ti takes the form

t ::= [ ]
| e : gj e0 . . . eij
| gj e0 . . . eij
| case e of p0 → t0; . . .
| let ⟨binds⟩ in t

The e terms are unrestricted expressions. There are many stepper functions next that
would give rise to this set of recursive functions but a simple form with a clear structural
similarity is

next (State0 x0 . . . xi0) = t0
...
next (Staten x0 . . . xin ) = tn

We have a single non-recursive Step function with multiple simple clauses. The body
expression ti of each clause takes the form

t ::= Done
| Yield e (State j e0 . . . eij )
| Skip (State j e0 . . . eij )
| case e of p0 → t0; . . .
| let ⟨binds⟩ in t

Given an unfoldr term unfoldr phi a, the stepper function phi has aspects both of the
stream stepper function next and of the recursive functions g0 . . . gn . Like the function
next it is a stepper function, but unlike next , it may be recursive and it may use auxiliary
recursive functions similar to g0 . . . gn .

Supposing that we can write phi as f0 where f0 . . . fn take the following form

f0 x0 . . . xi0 = t0
...
fn x0 . . . xin = tn

t ::= Nothing
| Just (e, fj e0 . . . eij )
| fj e0 . . . eij
| case e of p0 → t0; . . .
| let binds in t

There is a one-to-one correspondence with the form of stepper functions above and it is
reasonably clear that we can perform a translation. We start with the top level functions
f0 . . . fn . Each one is translated into a clause of the final stepper function next . Each one
gets a distinct data constructor for the stream state.
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J fi x0 . . . xi0 = ei K = next (State i x0 . . . xi0) = J ei K

The body term of each clause is translated as follows.

J Nothing K = Done
J Just (e, fi e0 . . . en) K = Yield e (State i e0 . . . en)
J fi e0 . . . en K = Skip (State i e0 . . . en)
J case e of p0 → t0; . . . K = case e of p0 → J t0 K ; . . .
J let binds in t K = let binds in J t K

In particular note that calls to the functions f0 . . . fn translate into skips to new stream
states.

Clearly, the form of definition we can translate from is still quite limited. There are a
few ways we can increase the range of definitions that fit this form.

Firstly we may need to unfold definitions of library and auxiliary functions that are used
in tail calls, since we need to translate their bodies.

Secondly we can perform full lambda lifting so instead of functions defined in local let
clauses they are moved to top level functions. Otherwise local let values can only be
used in argument positions, not in tail calls. That is we cannot translate the following
pattern where x is a lambda or let-bound variable

J x e0 . . . en K { error }

For example we cannot translate the following stepper function

let x ::Maybe (x , s)
x = . . .

in case f a of
A→ x
B → Nothing
C → x

In this case we could duplicate x into both branches, but in general the problem remains.

A further technique is to lift expressions to new top level functions. In particular if we
meet the following pattern

J Just (e, e ′) K

We can abstract over the free variables of e ′ and define a new top level function.
By replacing e ′ with a call to the new function then it matches the existing pattern
Just (e, fi e0 . . . en).

A similar technique would be to translate from general recursive list-generating definitions.
We simply change the cases for where the stepper function returns Nothing and Just into

J [ ] K = Done
J e : fi e0 . . . en K = Yield e (State i e0 . . . en)

Of course there are still syntactic restrictions and such a translation does not cover
consuming or transforming lists.
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Related work

The most closely related work is of course the foldr/build fusion system (Gill et al.,
1993; Gill, 1996) and the unbuild/unfoldr fusion system (Svenningsson, 2002). We have
covered both systems in detail in Chapter 1 and made frequent comparison to them in
Chapters 3 and 4. In this chapter we briefly review other related work.

5.1 Stream fusion and shortcut fusion theory

5.1.1 Mechanised fixpoint induction proofs

Huffman (2009) has developed a formalisation of stream fusion using the formal proof
tool Isabelle. The formalisation uses Isabelle/HOLCF (Regensburger, 1995) which is an
extension of the standard Isabelle/HOL for working with continuous functions in CPOs.
He proves that stream (unstream s) ≈ s , equivalent to our Lemma 3.8.2, and also proves
the abstraction property for a number of standard functions including map, filter , foldr ,
enumFromTo, append , zipWith and concatMap.

The most obvious difference with our presentation in Chapter 3 is that Huffman’s proofs
are machine-checked while those in Chapter 3 are by hand and are aimed at explaining
the proof strategy. The other significant difference is that he does not define ≈ as a
logical relation covering all types, rather it is defined as a relation at just the Stream
type. Similarly, no general data abstraction relation is defined. As a consequence it is
not possible to express the general stream fusion rule (Theorem 3.8.3). This reflects the
focus of the formalisation which is in part to demonstrate the utility of Isabelle/HOLCF
for proofs about lazy functional programs in Haskell, rather than the focus being on
providing an end-to-end proof of correctness of stream fusion.

If the logical relation version of ≈ can be expressed reasonably in Isabelle/HOLCF then
it seems likely that it would be relatively straightforward to express and prove the general
stream fusion rule. Similarly, one would wish to express the data abstraction property as
a logical relation and prove that stream functions satisfying the data abstraction property
also satisfy the precondition for the stream fusion rule (see Section 3.8.3).
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5.1.2 Proof techniques for abstract data types

Gibbons (2008) presents a theory of abstract data types that has application to streams
and to stream fusion. The intention is to be able to describe and prove interesting
properties about abstract types. He starts from the premise that abstract types have
existential types, meaning that existential quantification is used to hide the internal
representation type of an abstract type. He argues that a useful semantics for abstract
types is co-data and that taking this view enables the use of proof techniques for co-
recursive programs (Gibbons and Hutton, 2005), particularly techniques making use of
the properties of final co-algebras. The final co-data arises by taking an ADT and making
a (usually infinite) tree by repeatedly applying all operations in the ADT interface.
Equality between ADTs then coincides with equality between the trees.

As an example, Gibbons (2008, Section 4) applies this idea to streams: equality on streams
corresponds to equality on their unfolding to lists. He proves that stream ◦unstream = id
for non-skipping streams by showing it is an instance of the unbuild/unfoldr rule which
he proves using free theorems. This is essentially equivalent to our proof of Theorem 3.5.2
given in Section 3.5.2. He gives an additional proof of the same theorem using the
universal property of unfoldr .

He goes on to discuss skipping streams and equality of skipping streams as “equivalence
modulo Skips”, which is again equality of their unfolding to lists. As an example, he
proves one of the monad laws for streams, which requires proving an equality between
two stream terms. The proof makes use of the universal property of unfoldr via unfoldr
fusion. It also makes use of fixpoint induction for a step involving a function that does
the non-productive conversion from the Step x s functor to the Maybe (x , s) functor.

In Chapter 3 we did not directly need to address the issue of equality between streams
because the proof of the fusion rule and the proofs of the abstraction property only
involve equalities between lists.

Gill and Hutton (2009) describe the worker/wrapper transformation which is a simple
and elegant approach to data refinement that covers a wide range of examples. While
foldr/build makes for a quite interesting instance of the system, stream fusion appears
to be a rather uninteresting instance because stream functions are non-recursive and
it is the ability of the worker/wrapper transformation to handle data refinements for
recursive functions that is its most notable feature.

5.1.3 Shortcut fusion proofs based on hylomorphisms

Meijer et al. (1991) did much to popularise a style of calculating programs written in
terms of recursion combinators, namely folds, unfolds and combinations thereof. They
present a rich set of laws for manipulating and fusing functions described using these
combinators. In particular they describe hylomorphisms which generalise folds and
unfolds. A hylomorphism is specified using an algebra and a co-algebra. One can think
of a hylomorphism as using an unfold to generate a virtual data structure followed by a
fold that consumes the structure.
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Inspired by the foldr/build fusion rule of Gill et al. (1993), Takano and Meijer (1995)
give a generalisation of foldr/build to arbitrary inductive data. They also describe a
dual law for unfolds which Gill (1996) subsequently calls the unbuild/unfold rule. They
suggest the use of hylomorphisms for expressing and fusing a wider range of functions.

Hinze et al. (2011) present a fusion theory using hylomorphisms that has particular
relevance to shortcut fusion including the foldr/build , unbuild/unfoldr and stream fusion
systems. The motivation for the development of the theory is in part due to dissatisfaction
with the use of syntactic methods, such as fixpoint induction, in proving fusion rules.
Fixpoint induction is often seen as rather tedious and “low-level proof method” (Gibbons
and Hutton, 2005, Section 3). Though the tedium may be manageable using by automated
proof assistants, the greater complaint is that fixpoint induction tends not provide the
insights that more structured methods can give.

Hinze et al. (2011, Section 3) define a hylomorphism for an F-algebra a and an F-co-
algebra c as a function h that satisfies

h = a ◦ F h ◦ c

The major innovation compared to previous work on hylomorphism-based fusion is that
by restricting c to a subcategory of co-algebras known as recursive co-algebras, then
the above equation becomes the definition of a unique h. That is, given an F-algebra
a and a recursive F-co-algebra c then there is a unique h satisfying h = a ◦ F h ◦ c.
Just as uniqueness in the universal properties of fold and unfold leads to fold and unfold
fusion laws, the uniqueness property for these hylomorphisms leads to laws for fusing
hylomorphisms with algebras, co-algebras and other hylomorphisms.

The restriction to recursive co-algebras has particular advantages in the category SET,
or categories that are typically used for models of System F, since it allows algebras and
co-algebras to be treated together in one framework. Even in CPOs where data and
co-data coincide, the restriction is still useful due to the uniqueness property.

General fusion with algebras, co-algebras or hylomorphisms involves non-trivial side
conditions. The key characteristic of shortcut fusion is the use of more limited but
simpler fusion laws with no side conditions, which in turn makes it practical to apply
shortcut fusion laws automatically in an optimising compiler. The hylo fusion system can
express the fold/build and unbuild/unfold fusion laws (though the proof of each relies
on the free theorem about build and unbuild respectively).

Hinze et al. (2011, Section 5.6) also apply the hylo system to stream fusion, including
the details of skipping streams. A central idea is to express stream transformers using
natural transformations on the Step functor. In their formulation: stream consumers
are defined using algebras; stream producers using co-algebras and stream transformers
using natural transformations. Repeated use of algebra/hylo and hylo/co-algebra fusion
allows a linear pipeline of stream consumers, transformers and producers to be fused into
a single hylomorphism.

A particularly satisfying aspect of this system is the precise characterisation of stream
transformers, which is absent from Chapter 3 and only described informally in Chapter 4.

The system is described in a categorical style and much of the system is independent
of the underlying category. Some assumptions have to be proved differently in different
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categories, for example how one proves that a co-algebra is recursive is different between
the category SET and CPO.

It is interesting to compare the hylo system and the system described in Chapter 3 in
terms of the proof obligations for library authors. Hinze et al. (2011, Section 5.6) give
the example of filter . For our system in Chapter 3, each function requires a proof that it
satisfies the abstraction property fs A f , which for filter is

unstream ◦ filter s p = filter p ◦ unstream

This property is then proved directly using fixpoint induction. While it is not elegant,
it is not terribly difficult and as Huffman (2009) has demonstrated, the proofs can be
partially automated and machine checked.

To describe the proof obligations with the hylo system we first need a few definitions.
Instead of writing unstream, we write foldr fromStep and unfoldr toStep to expose and
emphasise the algebra fromStep and the co-algebra toStep.

toStep :: [a ] → Step a [a ]
fromStep :: Step a [a ]→ [a ]

toStep [ ] = Done
toStep (x : xs) = Yield x xs

fromStep Done = [ ]
fromStep (Skip xs) = xs
fromStep (Yield x xs) = x : xs

Similarly, the stream transformer filter s is written as µ filterStep. The µ operator lifts
a natural transformation to a fold, or alternatively there are also equivalent unfolds or
hylos.

filterStep p Done = Done
filterStep p (Skip s) = Skip s
filterStep p (Yield x s) | p x = Yield x s

| otherwise = Skip s

Finally, what Hinze et al. call the data abstraction property1 for filter is

foldr fromStep ◦ µ filterStep ◦ unfoldr toStep = filter

The claim is that since the left hand side is expressed in terms of folds, unfolds and
natural transformations then using the various fusion and computation laws the proof is
straightforward and it is left as an exercise to the reader. Note also that we have the
obligation to prove that filterStep is indeed a natural transformation.

To summarise the proof obligations:

• for all functions we must prove the data abstraction property;

• for producers we must prove that the co-algebra is recursive;

1This is a different and strictly weaker data abstraction property than the one used in Chapter 3.
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• for transformers we must prove the step transformer is a natural transformation.

In SET the recursive property of co-algebras is implied by termination. In CPO however
co-algebras that produce infinite structures are possible and indeed useful. No suggestion
is given as to how to prove that co-algebras are recursive.

While for a linear pipeline of consumers, transformers and producers, the system is
relatively straightforward, the situation for tree shaped combinations is more complicated.
We get trees when we have stream consumers or transformers that consume multiple
streams, such as zip. Hinze et al. (2011, Section 5.4) present a special fusion law for
parallel hylo-ana fusion – that is, the fusion of a transformer like zip with a pair of unfolds.
The proof obligation for the transformer stepper function is that it must transform a
pair of recursive co-algebras into a recursive co-algebras. No suggestion is given for how
to prove such a property.

While it would be interesting to compare the typical proof strategies that library authors
may use to discharge their various proof obligations – particularly in the context of
CPOs – it remains as further work. It also remains to be seen how insights from the
more structured approach using hylomorphisms might affect the practice of how shortcut
fusion, streams or otherwise, may be implemented.

5.1.4 Parametricity and free theorems

Historically, shortcut fusion rules have been justified using free theorems (e.g. Gill et al.,
1993, Section 3.4). Johann (2003, Section 1.2) pointed out that free theorems’ “correctness
has not yet been proved for the languages to which it is applied” because free theorems
rely on the parametricity property of models of System F but the fusion rules were being
applied in languages of partial functions such as Haskell. It is common practice during
program development to apply rules about total functions in the context of languages of
partial functions, and, perhaps somewhat surprisingly, this “fast and loose” reasoning
turns out to be at least partially justified (Danielsson et al., 2006). This justification
covers monomorphic functions and hence does not extend to free theorems.

Johann (2003) proves that the foldr/build rule is correct in the context of a language
PolyPCF – a strict polymorphic lambda calculus with general recursion and lazy lists. A
notion of parametricity is obtained by a careful construction of a logical relation that
captures contextual equivalence. While Johann’s development was is a step in the right
direction, since lazy languages are not captured by PolyPCF, the problem remained of
employing shortcut fusion in lazy languages without an adequate proof of correctness.

Svenningsson (2002, Section 3.3) suggests the approach taken by Johann (2003) as a
method by which one might prove the unbuild/unfoldr rule, but of course this would
still not justify the use of the rule in languages like Haskell.

Johann and Voigtländer have a series of papers on the topic of free theorems and shortcut
fusion rules in the presence of seq . They demonstrate (Johann and Voigtländer, 2006),
with counterexamples, that both the foldr/build and unbuild/unfoldr rules are wrong
when the language contains polymorphic seq . In particular, for each rule they gives
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examples where application of the rule make the program less defined, and examples
where the rule makes the program more defined. This contradicted the previous ‘folk
theorem’ that “free theorems remains valid in the presence of seq if all of the functions
appearing in it are strict and total”. Johann and Voigtländer showed how the fusion rules
can be fixed, but their revised rules require non-trivial side conditions on the strictness of
the arguments of foldr and unfoldr . Voigtländer has also investigated alternative shortcut
fusion rules that do not have problematic side conditions in the presence of seq , including
an unbuild/build rule (Voigtländer, 2008a) and a rule called pfold/buildp (Voigtländer,
2008b). He also proposes reformulations of the foldr/build and unbuild/unfoldr rules
which introduce extra terms in the result to avoid problems with seq . It remains to
be seen in a practical implementation if these changes interfere with the subsequent
optimisation phases – which as we know from Chapter 4 are not always trivial. The
combined effect of Johann and Voigtländer’s work is that it is no longer possible for
implementors of fusion systems to get away with ignoring seq or with relying on näıve
use of free theorems2.

In Chapter 3 we have been able to side-step the issues that Johann and Voigtländer
raise while still using a realistic semantic model that supports seq . Our fusion rule has a
side condition that each fusible function must satisfy and this condition is much more
demanding than the strictness properties described by Johann and Voigtländer (2006).
Thus in some sense the system we propose is worse. What makes it manageable however
is that each fusible function must in any case satisfy a data abstraction property, and
this property subsumes the side condition for the fusion rule and thus only one proof per
library function is required.

5.2 General deforestation techniques

The major difficulty in trying to eliminate intermediate data structures is recursion.
Eliminating intermediate structures in non-recursive code is relatively straightforward,
using simple local transformations such as case-of-case. There are two major approaches to
tackling the recursion problem: one is to identify and capture recursion using combinators
and the other is to tackle recursion directly using more sophisticated algorithms and
transformations.

In Chapter 1 we discussed the Burstall and Darlington (1977) fold-unfold calculation
system. The fold-unfold system is very general and many subsequent developments are
instances of the system – though they are designed with automation in mind. One such
system that we mentioned in Chapter 1 is the Wadler (1990b) deforestation algorithm.

Gill (1996, Section 6.1) makes a comparison between foldr/build and various extensions
of Wadler’s deforestation algorithm. Two classes that he identifies where deforestation
removes lists that foldr/build cannot are functions such as zip that consume multiple
input lists, and “irregular” consumers such as foldr1 . It is interesting to note that
unfold -based fusion handles both classes well.

2Indeed, more recently Seidel and Voigtländer (2010) have automated the construction of counter-
examples to näıve free theorems.
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Sørensen et al. (1994) compare several related systems: Wadler’s deforestation algorithm,
supercompilation, partial evaluation and ‘generalised partial computation’. Deforestation
is much more limited in its ambitions than the other techniques.

While many program optimisation transformations are an instance of partial evaluation,
deforestation is not one of them. On the other hand, supercompilation has a great deal
of overlap with both deforestation and with partial evaluation. Supercompilation was
first introduced by Turchin (1986) and there have been several subsequent developments
and variations on the theme. Supercompilation algorithms are program transformation
algorithms that involve unfolding function definitions (including recursive definitions),
evaluating, simplifying and emitting a residual program. One of the major challenges
is ensuring termination and this is one of the main areas of variation between different
supercompilation techniques.

There has been a recent resurgence of interest in supercompilation in the context of
Haskell (Mitchell and Runciman, 2008; Mitchell, 2010; Bolingbroke and Peyton Jones,
2010). This holds out the possibility that supercompilation may become practically
applicable for the same problems that are currently tackled using shortcut fusion. There
are however a number of issues to address before this can come to fruition. In addition to
building a practical implementation with reasonable compile times, there is the important
issue of control: supercompilation does a great deal more than deforestation, perhaps
too much in some cases. In particular current supercompilation algorithms can cause a
great deal of code duplication. Recent work by Jonsson and Nordlander (2011) suggests
one automated approach to preventing excessive code duplication.

Ohori and Sasano (2007) take another direct approach to the problem of eliminating
intermediate data structures in the presence of recursion. They argue that shortcut
fusion is too limited because in practice much potentially fusible code is directly written
using general recursion rather than in terms of recursion combinators. They propose
another automated transformation system that can be seen as an instance of Burstall
and Darlington fold-unfold calculation system. The key to the system is a transformation
they call fixed point promotion which takes the composition of two recursive functions
and produces a single recursive function. This enables many standard examples to be
fused, including tail-recursive consumers with accumulating parameters such as foldl .
Furthermore, the system is not limited to lists but works for any user-defined algebraic
type. The system is not strictly more powerful than shortcut fusion however: a limitation
imposed by the choice of termination condition prevents fusion in cases where a recursive
function is composed with itself, as in map f ◦map g for example. Overall, the system
appears very promising and the next obvious step would be a full-scale implementation
in a production compiler and an evaluation with more real programs.

A distinct advantage of the direct approaches to the recursion problem, such as supercom-
pilation or the fixed point promotion system, is that since ordinary recursive definitions
may be used, there is no need to prove that fusible library functions are equivalent to
their usual definitions.

On the other hand, an advantage of shortcut fusion is that it can be reasonably pre-
dictable: the ‘good producer / good consumer’ promise that we make for stream fusion
(Section 4.1.3), or that Gill (1996, Section 3.5.2) makes for foldr/build fusion, is relatively
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straightforward to understand and to use. For programmers to rely on these more general
transformations it will be important to be able to make a similar clear promise about
when the optimisation will be effective. It would be an interesting and somewhat ironic
outcome if these more general transformations become practically effective but promises
about their optimisation rely on the use of recursion combinators in the style of shortcut
fusion.

A hybrid approach to the recursion problem is to use shortcut fusion but to automati-
cally convert general recursive definitions into a form that uses the fusion combinators.
Launchbury and Sheard (1995) were the first to present such an approach. They present
an algorithm to transform recursive definitions into instances of foldr and build , both
for lists and generalised to other algebraic data types. Hu et al. (1996) describes an
algorithm to transform recursive definitions into hylomorphisms and Onoue et al. (1997)
extend this into an automated fusion system they call HYLO. We have mentioned
previously (Section 4.8.1) the approach taken by Chitil (2000) to derive ‘build wrappers’
for ordinary recursive functions.

5.3 Optimisation and cost models

Hope and Hutton (2006) describe their solution to a challenge that is in many ways
similar to the challenge we have attempted to tackle in Chapter 4. They imagine a
fusion system based on hylomorphisms and consider the issue of whether the fusion
transformation is actually an improvement in terms of maximum space usage. They note
that elements must be consumed as they are generated otherwise fusion simply replaces a
data structure with an equivalent structure of thunks3. For the special case of lists they
suggest the use of left-hylomorphisms which are the composition of an unfold followed
by a left fold. They define a hylo fusion rule and prove it correct in the context of CPOs
using fixpoint induction. The remainder of the paper is dedicated to proving results
about the maximum space use of functions using a technique to derive the space-use
function from the definition of original function.

The crucial difference between our work and that of Hope and Hutton is that we use a
cost measure that counts all the constructor allocations that are performed whereas Hope
and Hutton consider only the maximum allocations required at any one time. We have to
use our more detailed metric because the improvements that stream fusion make are not
measurable with the latter metric. The maximum allocation metric considers an allocation
followed by immediate deallocation to be neutral, but the transformation that stream
fusion performs is exactly for the purpose of eliminating such allocation/deallocation
pairs.

Gustavsson and Sands (2001) consider the problem of the effect of program transforma-
tions on space usage. They describe a detailed space semantics based on an abstract
evaluation machine. It takes into account many operational details of how lazy functional
languages are evaluated, including garbage collection. While the model is very detailed,
the improvement relation that they define – weak improvement (▹

≈
) – only captures “space

3Gill (1996, Section 3.5.6) discusses this problem in relation to the function reverse.
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improvement within a constant factor”. Thus the cost measure is unable to capture the
improvements of deforestation. As an example (Gustavsson and Sands, 2001, Section 6,
case study 2), they give an elegant definition of the function any and a deforested
definition

any p = or ◦map p

any ′ p [ ] = False
any ′ p (x : xs) = p x ∨ any ′ p xs

They sketch a proof of the proposition that any p xs ▹◃
≈

any ′ p xs. That is, under

the weak improvement relation the two definitions are equivalent, but to show that
deforestation is an improvement we need a relation that distinguishes the two definitions.

In Chapter 4 we did not use a detailed formal cost model. In particular we did not use
any abstract evaluation machine. Given the complexity of the transformations we are
interested in, we judged that a detailed model would make the analysis too difficult. We
picked an approximation that only considers the allocation of data constructors. It is
interesting to note that in our context we can avoid the complexity of considering garbage
collection since we are interested in the number of memory allocations performed during
evaluation and not the maximum residency.

5.4 Applications of stream fusion

In addition to our own previous work (Coutts et al., 2007a,b) which introduced stream
fusion and described applications to byte arrays and lists, there have been several other
applications of stream fusion. Most applications have been in the context of arrays or
array-like data structures.

The most high-profile application is as part of the ongoing Data Parallel Haskell project.
In their status report, Chakravarty et al. (2007, Section 6.3) describe how the previous
fusion system based on functional array fusion (Chakravarty and Keller, 2001) has been
replaced by an improved system based on stream fusion. As we demonstrated (Coutts
et al., 2007a, Section 5), stream fusion can achieve substantially higher performance than
functional array fusion.

One feature that we implemented4 for functional array fusion for byte arrays, was the
ability to eliminate intermediate arrays in a pipeline of non-fusible operations by using in-
place updates, thus saving unnecessary and expensive array copy operations. This feature
was given up in the move from to stream fusion, but the deficiency was subsequently
remedied by Leshchinskiy (2009) who described how to integrate this “recycling” feature
with stream fusion for arrays.

Harper (2010) applied stream fusion in the context of an implementation of Unicode
strings. Rather than being an afterthought, streams and stream fusion was integral to
the prototyping and performance tuning effort. Operations on streams can be reused

4This feature is not described in the paper but is described in the code that accompanies the paper
(Coutts et al., 2007a, Reference 1).



CHAPTER 5. RELATED WORK 260

at many different concrete representations simply by defining new stream and unstream
functions. By making use of stream fusion, such implementations can often perform
as well as direct implementations but at considerably reduced effort. Thus it becomes
practical to experiment with multiple concrete representations. Harper implemented and
benchmarked three different string implementations using the three common Unicode
encodings.

This stream-based approach is not a complete solution however, there are some operations
that are cheap when implemented for concrete representation but that are expensive
when implemented via streams. In particular, stream operations are unable to take
advantage of sharing within a concrete representation.

Liu et al. (2009) describe a variation on the standard set of arrow combinators and laws
that they call causal commutative arrows. They describe a rule-based optimisation proce-
dure and they report that when combined with stream fusion, performance improvements
that exceed two orders of magnitude are possible.



Chapter 6

Conclusion

6.1 Contributions

As this thesis is in part a product of the Programming Research Group, it seems apt to
consider it in the context of the founding philosophy of the PRG.

“It has long been my personal view that the separation of practical
and theoretical work is artificial and injurious. Much of the practical work
done in computing, both in software and in hardware design, is unsound
and clumsy because the people who do it have not any clear understanding
of the fundamental design principles of their work. Most of the abstract
mathematical and theoretical work is sterile because it has no point of contact
with real computing. One of the central aims of the Programming Research
Group as a teaching and research group has been to set up an atmosphere in
which this separation cannot happen.”

Christopher Strachey (1974)

Shortcut fusion is a research area that is particularly well-suited to making fruitful
connections between theory and practice. The design and correctness of shortcut fusion
systems depend on interesting theoretical properties of data and computation, while
improving the performance of programs that people are interested in, is clearly of practical
use.

The criteria by which we should evaluate fusion systems also combines theory and practice:
the effect of a fusion system should be a correct program transformation that improves
program performance in some way. A program optimisation that changes the program
result is not generally useful. Neither is it useful – as a program optimisation – to have a
correct program transformation that does not in fact improve performance. There are
many published papers that concern just one aspect and assume, either implicitly or
explicitly, that the other aspect is straightforward or uninteresting. Both aspects are
essential and both have interesting problems. In this thesis we have attempted to address
both criteria.
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Stream fusion is a reasonably successful and practical program optimisation. Our
initial work on stream fusion (Coutts et al., 2007a,b) was primarily driven by practical
concerns of performance. It neglected any serious formal treatment of correctness and
concentrated on empirical evidence for the optimisation claim. In this thesis we have
attempted to put the existing practical work on firmer theoretical ground by proving that
the transformation is correct and by making a more universal and theoretical argument
that the transformation can improve program performance.

6.1.1 Correctness

We have given a proof that the stream fusion transformation is correct in the context
of CPOs. Our proof of the stream/unstream fusion rule is sufficiently general to cover
stream fusion for arbitrary algebraic data types. We have also given a general criteria for
the correctness of stream fusion for any abstract data type that can be viewed as a stream
via suitable stream and unstream conversions. We have stated the data abstraction
property that fusible functions must satisfy, and for the specific case of lists and arrays
we have proved that a number of standard operations satisfy the property.

While our proof approach is not the most elegant, relying as it does on fixpoint induction,
it has the practical advantage that it is valid in a semantic model that is realistic for the
languages in which stream fusion is applied. The fact that our proof approach covers
abstract types, such as arrays, is of practical importance because arrays are the most
common application of stream fusion.

6.1.2 Optimisation

We have given a semi-formal argument that, subject to various reasonable syntactic
conditions on fusible functions, stream fusion for lists is always possible and that it is
strictly an improvement in terms of the number of data constructor allocations. Indeed
we show that it is optimal in the sense that it eliminates all the list data constructors1.
The optimisation argument covers not just the stream/unstream fusion rule itself, but the
full transformation end-to-end – including the switch from standard definitions to fusible
definitions. We have demonstrated that the syntactic conditions on fusible functions are
reasonable by showing that many standard list functions can be defined in a way that
satisfies the conditions.

We have not directly covered implementation issues, however there are several aspects
of our optimisation argument that may be of use to practitioners. While our claim is
just that an optimisation is possible, and we do not give a specific algorithm or prescribe
a particular implementation approach, the argument that we give is constructive and
may be useful as a basis for an implementation. We describe one particular sequence of
transformations which closely follows those that are used in existing implementations
of stream fusion. The argument necessitates giving a detailed description of how the

1Strictly speaking we show only that we eliminate as many data constructor allocations as there
are in the original lists. We do not track the identity of constructor allocations, just the number of
allocations.
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optimisation works for this sequence of transformations. In addition, for our particular
sequence of transformations, we give a clear set of conditions for what makes a good
producer and a good consumer. This is directly useful as guidance on how to define
fusible functions, or more generally, it may form the basis of the contract between the
implementor of a stream fusion system, and those writing fusible definitions for use with
the system.

6.2 Assessment of stream fusion

Stream fusion is now a reasonably mature and reasonably effective program optimisation
with multiple independent implementations. It has been particularly successful in
applications to array-like types.

While it was initially hoped that stream fusion could be strictly better than foldr/build
fusion, and for example replace the use of foldr/build fusion in the list library in GHC,
it is clear that there is no single best choice for all applications, given the state of the art
in the two approaches.

The fact that we cannot yet effectively optimise uses of concatMap nor list comprehensions
is a major limitation preventing the use of stream fusion in place of foldr/build for lists.
By contrast, the foldr/build system works very effectively for list comprehensions. On
the other hand, current implementations of foldr/build fusion do not effectively handle
consumers with accumulating parameters such as foldl . In our previous empirical work
we found that the main area where our implementation of stream fusion performed
better than the GHC implementation of foldr/build fusion was in left folds. This is not
a fundamental limitation of foldr -based fusion however; Gill (1996, Section 4.4) gives
an analysis and a transformation that can turn foldl defined in terms of foldr into an
efficient recursive definition.

While these practical and implementation problems persist, stream fusion remains better
suited for array applications where loop-like strict left folds are the norm, while foldr/build
remains better suited to lists where list comprehensions are important and it is tolerable
to do without fusion for foldl .

The obvious future work in this area is to solve stream fusion’s problem with concatMap
and to implement Gill’s arity analysis and then to perform new performance experiments.
We conjecture that the difference in the results between the two approaches will become
much less pronounced.

There remains fundamental limitations however: foldr -based fusion cannot express
multiple consumers such as zip while unfoldr -based fusion cannot express multiple
producers such as unzip. In this aspect it would appear that unfoldr -based fusion has the
advantage because multiple consumers appear to be more common. Furthermore it is as
yet unclear whether there are performance advantages to be gained from fusing multiple
consumers. The issue is essentially one of ‘buffering’. In a function such as unzip, the
two output lists are produced in lock-step. Unless they can also be consumed in lock step
– by separate consumers – then there is a mismatch and unconsumed elements from one
list would have to be buffered, losing any of the allocation savings that arose from fusion.
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It is interesting to observe that shortcut fusion approaches in general, and stream fusion in
particular, trade off one kind of complexity for another: complexity in the implementation
versus complexity in the optimisation argument. All three of the shortcut fusion systems
that we have discussed consist of a sequence of local transformations, of which only one
or two are classical fusion rules. The argument has been that these features make them
relatively easy to implement and relatively easy to integrate into an optimising compiler
because it is often possible to reuse existing infrastructure for many of the standard
local transformations. The relative simplicity in implementation has made it possible
to experiment easily with the design of stream fusion. On the other hand, since stream
fusion requires a whole sequence of transformations, each step with its own pre and post
conditions, the optimisation argument is relatively complex. For each transformation step
we have had to argue that the transformation is always applicable and that it produces
the desired result. It seems likely that a direct implementation, perhaps using a special
state-machine representation, would be rather simpler to explain but it would be much
less desirable from the point of view of compiler engineering.

This observation on the apparent complexity tradeoff also suggests that it may be easier
to give an optimisation argument for more holistic approaches such as supercompilation.

6.3 Further work

6.3.1 Theoretical

As mentioned in Section 5.1.1, it would be interesting to extend the existing Isabelle/
HOLCF formal proofs to give an end-to-end proof for stream fusion as a whole. In
particular, the remaining parts are: to express the abstraction property and the fusion
rule in their full generality; to prove that the abstraction property is sufficient to satisfy
the side condition in the fusion rule; and to show that the existing abstraction properties
for individual functions are instances of the general abstraction property.

A useful extension would be to develop a search strategy for the fixpoint induction proofs
of the abstraction property. In Section 3.9.8 we described some general heuristics for
finding proofs, which essentially amounts to following the recursive call structure of
the function in question. It seems likely that this approach could be partially or fully
automated in the context of an interactive or scripted theorem prover.

In Chapter 4 we were unable to give a full formal optimisation argument. It would
obviously be desirable to make the argument more formal, either to give greater confidence,
to find a simpler argument or to give an argument with fewer approximations. If we
follow the basic structure of the argument in Chapter 4 then there are two major parts
to a formalisation:

1. the syntactic argument that the transformations are possible and that they do
what we expect; and

2. the cost model.
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As we discussed in Section 4.4.5, the state machine abstraction may give a method of
formalising the transformation arguments. One would attempt to precisely specify an
abstraction relation between the syntactic representation of stepper functions and the
state machine representation. One would then aim to show that an appropriate form
of state machine composition works. Finally, it may be useful to have another relation
between the state machine and the syntax of a stream consumer.

In Section 5.3 we looked at some existing work on cost models and optimisation, however
it appears that no existing model is sufficiently precise to capture the improvements that
deforestation achieves. In particular it is important to capture the cost of each allocation
event, rather than the overall storage requirements.

6.3.2 Practical

The most significant remaining practical work on stream fusion itself is to resolve the
problem with effectively optimising uses of concatMap. In Section 4.8.3 we suggest
a number of avenues of which the most promising appears to be to use a specialised
concatMap for exactly the situations we expect to be able to handle. The challenge
with this approach is that a more sophisticated rule matching and rewriting language is
required.

In Section 4.6.6 we discussed the problem of how to ensure that call pattern specialisation
does actually specialise on all the stream state shapes. We suggested as a possible
solution, to annotate the data types used for the state shapes, and as a special case in
the call pattern specialisation heuristics, to always specialise patterns involving data
constructors of such annotated data types.

Just as Chitil (2000) shows that it is often possible to derive fusible definitions from
general recursive definitions for the foldr/build system, it seems likely that a similar
technique may be possible for stream fusion. As with Chitil’s technique, it would likely
involve a combination of unfolding and a type analysis. If the outcome of the analysis is
positive then there would follow a syntactic transformation similar to that described in
Section 4.8.4.

As mentioned above, it would be desirable to implement Gill’s arity analysis which should
enable foldr/build fusion to be an effective optimisation for left folds2.

Finally, with a solution to the concatMap problem and an implementation of the arity
analysis, it would then be desirable to conduct new performance experiments, with a
variety of fusion micro-benchmarks and real programs, to see how stream fusion and
foldr/build fusion compare in practice.

2At the time of writing it appears that this transformation has been implemented in GHC, though it has
yet to be tried in conjunction with foldr/build . http://hackage.haskell.org/trac/ghc/ticket/4474

http://hackage.haskell.org/trac/ghc/ticket/4474
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